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modeling human cognition and per-
ception.

Connectionism and symbolicism
both agree on the idea of intelligence
as information processing of
representations but disagree about the
medium in which the representations
reside and the corresponding process-
ing mechanisms. We believe that
symbolicism and connectionism carry
a large amount of unanalyzed assump-
tional baggage. For example, it is not
clear if many of the theories cast in
the symbolic mode really require this
form of computation and what role
the connectionist architecture plays
in a successful connectionist solution
to a problem. We examine the
assumptions and the claims of con-
nectionism in this article to better
understand the nature of representa-
tions and information processing in
general.

The Nature of Representations:
Roots of the Debate

The symbolic versus connectionist
debate in AI today is the latest version
of a fairly classic contention between
two sets of intuitions, each leading to
a weltanschauung about the nature of
intelligence. The debate can be traced
in modern times at least as far back as
Descartes (to Plato if one wants to go
further back) and the mind-brain dual-
ism known as Cartesianism. In the
Cartesian world view, the phenomena
of the mind are exemplified by lan-
guage and thought. These phenomena
can be implemented by the brain but
are seen to have a constituent struc-
ture in their own terms and can be
studied abstractly. Symbolic logic and
other symbolic representations are
often advanced as the appropriate
tools for studying these phenomena.

Challenge to 
the Symbolic View

Much of the theoretical and empirical
research in AI over the past 30 years
has been based on the so-called sym-
bolic paradigm—the thesis that algo-
rithmic processes which interpret dis-
crete symbol systems provide a good
basis for modeling human cognition.
Stronger versions of the symbolic
paradigm were proposed by Newell
(1980) and Pylyshyn (1984). Newell’s
physical symbol system hypothesis is
an example of the symbolic view.
Pylyshyn argues that symbolicism is
not simply a metaphoric language to
talk about cognition but that cogni-
tion literally is computation over
symbol systems. It is important to
note that the symbolic view does not
imply a restriction to serial computa-
tion or a belief in the practical
sufficiency of current von Neuman
computer architectures for the task of
understanding intelligence. Often, dis-
agreements about symbolicism turn
out to be arguments for computer
architectures that support some form
of parallel and distributed processing
rather than arguments against compu-
tations on discrete symbolic represen-
tations.

In spite of what one might regard as
significant AI achievements in provid-
ing a computational language to talk
about cognition, recurring challenges
have been made to the symbolic
paradigm. A number of alternatives
have been proposed whose basic
mechanisms are not in the symbol-
interpretation mode. Connectionism
is one such alternative. It revives the
basic intuitions behind the early per-
ceptron theory (Rosenblatt 1962) and
offers largely continuous, nonsymbol-
interpreting processes as a basis for

Connectionism challenges a
basic assumption of much of AI, that

mental processes are best viewed as algo-
rithmic symbol manipulations. Connec-
tionism replaces symbol structures with

distributed representations in the form of
weights between units. For problems close

to the architecture of the underlying
machines, connectionist and symbolic

approaches can make different representa-
tional commitments for a task and, thus,

can constitute different theories. For com-
plex problems, however, the power of a
system comes more from the content of
the representations than the medium in

which the representations reside. The con-
nectionist hope of using learning to obvi-

ate explicit specification of this content is
undermined by the problem of program-

ming appropriate initial connectionist
architectures so that they can in fact

learn. In essence, although connectionism
is a useful corrective to the view of mind
as a Turing machine, for most of the cen-
tral issues of intelligence, connectionism

is only marginally relevant.

This article is an expanded version of part of a larger
paper entitled “What Kind of Information Processing Is
Intelligence? A Perspective on AI Paradigms and a Pro-
posal” that appears in Foundations of Artificial Intelli-

gence: A Source Book, eds. Derek Partridge and Yorick
Wilks, Cambridge University Press, 1988. A much

abridged version appears in Brain and Behavioral 

Sciences  11(1) as a commentary on a paper on 
connectionism.

WINTER 1988    25

Processing Abstractions
The Message Still Counts More Than the Medium



Functionalism in philosophy, infor-
mation-processing theories in psy-
chology, and the symbolic paradigm
in AI all share these assumptions.
Although most of the intuitions that
drive this point of view arise from a
study of cognitive phenomena, the
thesis is often extended to include
perception; for example, for Bruner
(1957), perception is inference. In its
modern version, the Cartesian view-
point appeals to the Turing-Church
hypothesis as a justification for limit-
ing attention to symbolic models.
These models ought to suffice, the
argument goes, because even continu-
ous functions can be computed to
arbitrary precision by a Turing
machine.

The opposing view springs from
skepticism about the separation of the
mental from the brain-level phenome-
na. The impulse behind anti-Carte-
sianism appears to be a reluctance to
assign any kind of ontological inde-
pendence to the mind. In this view,
the brain is nothing like the symbolic
processor of Cartesianism. Instead of
what is seen as the sequential and
combinational perspective of the sym-
bolic paradigm, some of the theories
in this school embrace parallel, holis-
tic (that is, they cannot be explained
as compositions of parts), nonsymbol-
ic alternatives; however, others do not
even subscribe to any kind of informa-
tion processing or representational
language in talking about mental phe-
nomena. Those who do accept the
need for information processing of
some type nevertheless reject process-
ing of labeled symbols and look to
analog, or continuous, processes as
the natural medium for modeling the
relevant phenomena. In contrast to
Cartesian theories, most of the con-
crete work deals with perceptual and
motor phenomena, but the framework
is meant to cover complex cognitive
phenomena as well.

Eliminative materialism in philoso-
phy, Gibsonian theories in psycholo-
gy, and connectionism in psychology
and AI can all be grouped as more or
less sharing this perspective, even
though they differ from each other on
a number of issues. The Gibsonian
direct perception theory (Gibson
1950), for example, is nonrepresenta-
tional. Perception, in this view, is nei-

ther an inference nor a product of any
kind of information processing;
rather, it is a one-step mapping from
stimuli to categories of perception
made possible by the inherent proper-
ties of the perceptual architecture. All
the needed distinctions are already
directly in the architecture, and no
processing over representations is
needed.

We note that the proponents of the
symbolic paradigm can be happy with
the proposition that mental phenome-
na are implemented by the brain,
which might or might not have a
symbolic account. However, the anti-
Cartesian theorists cannot accept this
duality. They want to show the mind
as epiphenomenal. To put it simply,
the brain is all there is, and it isn’t a
computer.

Few people in either camp subscribe
to all the features in our descriptions.
Connectionism is a less radical mem-
ber of the anti-Cartesian camp
because many connectionists do not
have any commitment to brain-level
theory making. Connectionism is also
explicitly representational—its main
argument is only about the medium
of representation. The purpose of the
preceding account is to help in
understanding the philosophical
impulse behind connectionism and
the rather diverse collection of bedfel-
lows that it has attracted.

Symbolic and NonSymbolic
Representations

To better understand the difference
between the symbolic and nonsym-
bolic approaches, let us consider the
problem of multiplying two positive
integers. We are all familiar with algo-
rithms to perform this task. We also
know how the traditional slide rule
can be used to do this multiplication.
The multiplicands are represented by
their logarithms on a linear scale,
which are then added by being set
next to each other; the result is
obtained by reading off the sum’s
antilogarithm. Although both the
algorithmic and slide rule solutions
are representational, in no sense can
either of them be thought of as an
implementation of the other. They
make different commitments about
what is represented. Striking differ-

ences also exist between them in
computational terms. As the size of
the multiplicands increases, the algo-
rithmic solution suffers in the
amount of time it takes to complete
the solution, and the slide rule solu-
tion suffers in the amount of precision
it can deliver.

Let us call the algorithmic and slide
rule solutions S1 and S2. Consider
another solution, S3, which is the
simulation of S2 by an algorithm. S3
can simulate S2 to any desired accura-
cy. However, S3 has radically different
properties from S1 in terms of the
information that it represents. S3 is
closer to S2 representationally. Its
symbol-manipulation character is at a
lower level of abstraction altogether.
Given a black-box multiplier, ascrip-
tion of S1or S2 (among others) about
what is really going on results in dif-
ferent theories about the process.
Each theory makes different represen-
tational commitments. Further,
although S2 is analog, the existence of
S3 implies that the essential character-
istic of S2 is not continuity but a radi-
cally different sense of representation
and processing than S1.

The connectionist models relate to
the symbolic models in the same way
S2 relates to S1. An adequate discus-
sion of what makes a symbol requires
more space and time than we current-
ly have (Pylyshyn [1984] provides a
thorough and illuminating discus-
sion), but the following points are use-
ful. A type-token distinction exists:
Symbols are types about which
abstract rules of behavior are known
and can be brought into play. This dis-
tinction leads to symbols being labels
that are interpreted during the pro-
cess; however, no such interpretations
exist in the process of slide rule mul-
tiplication (except for input and out-
put). Thus, the symbol system can
represent abstract forms, and S2 per-
forms its addition or multiplication
not by instantiating an abstract form,
but by having, in some sense, all the
additions and multiplications directly
in its architecture.

Although we use the word “pro-
cess” to describe both S1 and S2,
strictly speaking no process exists in
the sense of a temporally evolving
behavior in S2. The architecture
directly produces the solution. This is
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the intuition present in Gibson’s
(1950) theory of direct perception as
opposed to Bruner’s (1957) alternative
proposal of perception as inference,
because the process of inference
implies a temporal sequence. Connec-
tionist systems can have a temporal
evolution, but unlike algorithms,
information processing does not have
a step-by-step character. Thus, con-
nectionist models are often presented
as holistic.

The main point of this subsection is
that functions exist for which the
symbolic and connectionist accounts
can differ fundamentally in terms of
the representational commitments
they make. Having granted that con-
nectionism can make a theoretical
difference, we now want to argue that
the difference connectionism makes
is relatively small to the practice of
most AI as a research enterprise.
Although our arguments refer
specifically to connectionist models,
they are actually intended to apply to
nonsymbolic theories in general.

Connectionism and 
Its Main Features

Connectionism as an AI theory comes
in many different forms.  Exactly
what constitutes the essence of con-
nectionism is open to debate.  The
connectionist architectures in the per-
ceptron/parallel distributive process-
ing style (Rosenblatt 1962; Rumelhart
et al. 1986) share the following ideas.
The representation of information is
in the form of weights of connections
between processing units in a net-
work, and information processing
consists of the units transforming
their input into some output, which is
then modulated by the weights of
connections as input to other units.
Connectionist theories emphasize a
form of learning in which the weights
are adjusted continuously so that the
network’s output tends toward the
desired output. Although this descrip-
tion is couched in nonalgorithmic
terms, in fact, many connectionist
theorists describe the units in their
systems in terms of algorithms that
map their input into discrete states.
However, the discrete-state descrip-
tion of the units’ output, as well as
the algorithmic specification of the

units’ behavior in a connectionist net-
work, is largely irrelevant. This
approach is consistent with Smolen-
sky’s (1988) statement that the lan-
guage of differential equations is
appropriate to use when describing
the behavior of connectionist net-
works. Further, although our descrip-
tion is couched in the form of contin-
uous functions, the essential aspect of
the connectionist architecture is not
the property of continuity; it is that
the representation medium has no
internal labels that are interpreted and
no abstract forms that are instantiated
during processing. Sidebar 2, entitled

A Connectionist Solution to Word
Recognition, describes a specific con-
nectionist proposal for word recogni-
tion.

A number of properties of such con-
nectionist networks are worthy of
note and explain why connectionism
is viewed as an attractive alternative
to the symbolic paradigm. first is par-
allelism. Although theories in the
symbolic paradigm are not restricted
to serial algorithms, connectionist
models are intrinsically parallel. Sec-
ond is distribution. In some connec-
tionist schemes (McClelland, Rumel-
hart, and Hinton 1986), the represen-

Consider the problem of multiplying
45 x 17 to get 765. A classical algo-

rithmic approach to this problem is to
do it the way we were taught in

school, showing the work:
45
17
315
45
765
However, we can also use a slide rule.
On a slide rule, the number 45 is writ-
ten log(45) units from the end of the
rule. Hence, to multiply 45 x 17, we
line up the distances log(45) and
log(17) next to each other, which gives
us the place on the rule at log(45) +
log(17) = log(765), which is labeled
765, the desired answer (see figure 1).

Notice that if we use the pencil-
and-paper algorithm on larger num-
bers, we use more pencil lead and
spend more time writing, and that if
we use the slide rule, the answer is
less precise.

In the pencil-and-paper example,

we are dealing with integer multiples
of powers of ten and using the
columns to keep track of symbolic
representations of them. In the case of
the slide rule, we are dealing with log-
arithms and letting the architecture of
the slide rule keep track of them.

We can also solve the multiplica-
tion by simulating the slide rule with
a computer. That is, we can compute
the logarithms to any desired accura-
cy, add them up, to get the logarithm
of the answer.

log 45 + log 17 = log 765
1.653 + 1.230 = 2.883

In this solution, the objects are still
logarithms, but the addition is done
symbolically. Just as with the slide
rule, when the numbers get larger, the
answer is less precise. The interesting
characteristics of each solution come
from the representational commit-
ments it makes, not from the symbol-
ic-nonsymbolic nature of its architec-
ture.

21

5 6 7 8

.1 .2 .3 .4 .5 .6 .7 .8 .9

.5 .5 .5 .5

4
7.65

45 x 17 = 765

Figure 1. Multiplication Using a Slide Rule.

Three Ways to Multiply Numbers
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tation of information is distributed
over much of the network in a spe-
cialized sense—the state vector of the
network weights is the representa-
tion. Third is the softness of con-
straints. Because the network con-
tains a large number of units, each
bearing a small responsibility for the
task, and because of the continuity of
the space over which the weights take
values, the output of the network
tends to be more or less smooth over
the input space. Fourth is learning.
Because of a belief that connectionist
schemes are particularly good at
learning, often an accompanying
belief exists that connectionism offers
a way to avoid programming an AI
system and let learning processes dis-
cover all the needed representations.

The properties of parallelism and
distribution have attracted adherents
who feel that human memory has a

holistic character—much like a holo-
gram—and consequently react nega-
tively to discrete symbol-processing
theories because they compute the
needed information from constituent
parts and their relations. Dreyfus
(1979), for example, argues that pat-
tern recognition in humans does not
proceed by combining evidence about
constituent features of a pattern but,
rather, uses a holistic process. Thus,
Dreyfus looks to connectionism as
vindication of his long-standing criti-
cism of symbolic theories. Connec-
tionism is said to perform direct recog-
nition, and symbolicism performs
recognition by sequentially computing
intermediate representations.

These characteristics are especially
attractive to those who believe that
AI must be based more on brainlike
architectures, even though within the
connectionist camp, a wide diver-
gence is present about the degree to
which directly modeling the brain is
considered appropriate. Although
some of the theories explicitly
attempt to produce neural-level com-
putational structures, others propose
an intermediate subsymbolic level
between the symbolic and neural lev-

els (Smolensky 1988); still others offer
connectionism as a computational
method that operates in the symbolic-
level representation itself (Feldman
and Ballard 1982). The essential idea
uniting these theories is that the
totality of connections defines the
information content rather than the
representation of information as a
symbol structure.

Is Connectionism Merely an
Implementation Theory?

Several arguments have been made
that connectionism can, at best, pro-
vide possible implementations for
symbolic theories. According to one,
continuous functions are thought to be
the alternative to discrete symbols;
because they can be approximated to
an arbitrary degree of precision, it is

argued that one need only consider
symbolic solutions. Another argument
is that connectionist architectures are
thought to be the implementation
medium for symbolic theories, much
as the computer hardware is the imple-
mentation medium for software. In the
subsection entitled Symbolic and Non-
symbolic Representations, we consider
and reject these arguments. We show
that symbolic and nonsymbolic solu-
tions can be alternative theories in the
sense that they can make different rep-
resentational commitments.

Yet another argument is based on a
consideration of the properties of
high-level thought, in particular, lan-
guage and problem-solving behavior.
Connectionism by itself does not have
the constructs for capturing these
properties, the argument runs, so, at
best, it can only be a way to imple-
ment the higher-level functions. We
discuss this point and related issues in
Roles of Symbolic and Connectionist
Processes.

Having granted that connectionism
can make a theoretical difference, we
now argue the difference connection-
ism makes is relatively small to the
practice of most of AI.

Information-Processing
Abstractions

Some proponents of connectionism
claim that although solutions in the
symbolic paradigm are composed of
constituents, connectionist solutions
are holistic. Composition, in this
argument, is taken to be, intrinsically,
a symbolic process. Certainly, for
some simple problems, connectionist
solutions exist with this holistic char-
acter. Some connectionist solutions to
character recognition, for example,
directly map from pixels to characters
and cannot be explained as composing
evidence about the features, such as
closed curves, lines, and their rela-
tions. Character recognition by tem-
plate matching, a nonsymbolic
though not a connectionist solution,
is another example whose informa-
tion processing cannot be explained as
feature composition. However, as
problems get more complex, the
advantages of modularization and
composition are as important for con-
nectionist approaches as they are for
symbolic computation.

Let us consider word recognition, a
problem area that has attracted
significant attention in connectionist
literature. In particular, consider
recognition of the word TAKE as dis-
cussed by McClelland and Rumelhart
(1981). A featureless connectionist
solution similar to the one for individ-
ual characters can be imagined, but a
more natural solution is one that in
some sense composes the evidence
about individual characters into a
recognition of the word TAKE (see
sidebar 2). In fact, the connectionist
solution that McClelland and Rumel-
hart describe has a natural interpreta-
tion in these terms. Just because the
word recognition is done by composi-
tion does not mean that each of the
characters is explicitly recognized as
part of the procedure or that the evi-
dence is added together in a step-by-
step, temporal sequence.

Why is such a compositional solu-
tion more natural? Reusability of
parts, reduction in learning complexi-
ty, and greater robustness as a result
of intermediate evidence are the
major computational advantages of
modularization. If the reader doesn’t
see the power of modularization for

Connectionism does not offer 
a royal road to learning
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word recognition, consider sentence
recognition: If one were to go directly
from pixels to sentences, without in
some sense going through words, the
number of recognizers and their com-
plexity would have to be quite large
even for sentences of bounded length.
Composition is a powerful aid against
complexity, whether the underlying
system is connectionist or symbolic
(Simon 1969). Of course, connection-
ism provides one style for composi-
tion, and symbolic methods provide

another, each with its own signature
in terms of the performance details.

These examples also raise questions
about the degree to which connection-
ist representations can be distributed.
For complex tasks, information is, in
fact, localized into portions of the net-
work. Again, in the network for recog-
nition of the word TAKE, physically
local subnets can be identified, each
corresponding to one of the charac-
ters. Thus, hopes for almost holo-
graphically distributed representa-

tions are bound to be unrealistic.

The Information-Processing Level

Marr (1982) originated the method of
information-processing analysis as a
way to separate the essential elements
of a theory from implementation-level
commitments. He proposed that the
following methodology be adopted for
this purpose. First, identify an infor-
mation-processing function with a
clear specification about what kind of
information is available for the func-

For an illustration of how connection-
ist networks work, let us consider the
model proposed by McClelland and
Rumelhart (1981) for the perception of
letters of visually presented words.
Our description of their model closely
follows McClelland, Rumelhart, and
Hinton (1986). Their model contains
four sets of detectors for the four-letter
input words, with a set of units
assigned to detect visual features in
each of the four different letter posi-
tions. The feature-detecting units for
one of the letter positions are shown
in figure 2. There are four sets of
detectors for the letters themselves,
and one set for the words. Each unit in
the network has an activation value
that corresponds to the strength of the
hypothesis which states what the unit
stands for is present in the input. The
connections between the units in the
network are such that if two units are
mutually consistent—in the way that
the letter T in the first position is con-
sistent with the word TAKE—then the
activation of one unit tends to support
the activation of the other. Similarly,
if two hypotheses are mutually incon-
sistent, then the corresponding units
tend to inhibit each other.

Let us consider what happens when
a familiar stimulus under degraded
conditions is presented to this net-
work. Let us suppose that the input
display consists of the letters T, A, and
K fully visible and enough of the
fourth letter to rule out all letters but
E or F. Initially, the activations of all
units are set at or below zero. When
the display is presented, the activa-
tions of detectors for features present
in each letter position grow above

zero. In the first three positions, T, A,
and K are unambiguously activated.
For the fourth position, the activations
of the detectors for E and F start grow-
ing as the feature detectors below
them are activated. As these detectors
become active, they and the detectors
for T, A, and K start to activate detec-
tors for words that have these letters
in them. A number of words might be
partially consistent with the active let-
ters, but only TAKE matches the
active letters in all positions. As a

result, TAKE becomes more active
than any other word and inhibits other
words, thereby successfully dominat-
ing the pattern of activation among
the word units. As TAKE grows in
strength, it sends feedback to the letter
level, reinforcing the activations of T,
A, K, and E. This feedback gives E the
upper hand on F in the fourth position,
and eventually the stronger activation
of the E detector dominates the pat-
tern of activation, suppressing the F
detector completely.

Figure 2. Connectionist Network for Word Recognition. 

From “An Interactive Model of Context Effects in Letter Perception: Part 1, An Account of
Basic Findings” by J. L. McClelland and D. E. Rumelhart. Psychological Review 88:380. 

Photo courtesy of American Psychological Association, copyright 1981. Reprinted by permission.
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tion as input and what kind of infor-
mation needs to be made available as
output. Then, specify a particular
information-processing theory for
achieving this function by stating
what kinds of information need to be
represented at various processing
stages. Actual algorithms can then be
proposed to carry out the information-
processing theory. These algorithms
make additional representational
commitments. In the case of vision,
for example, Marr specified that one
of the functions is to take image
intensities in a retinal image as input
and produce as output a three-dimen-
sional shape description of the objects
in the scene. His theory of how this
function is achieved in the visual sys-
tem is that three distinct kinds of

information need to be generated:
first, from the image intensities, a pri-
mal sketch of significant intensity
changes—a kind of edge description of
the scene—is generated. Second, a
description of the objects’ surfaces
and their orientation—what he called
a 2-1/2 -dimensional sketch—is pro-
duced from the primal sketch. Third,
a three-dimensional shape description
is generated. Even though Marr talked
in the language of algorithms as the
way to realize the information-pro-
cessing theory, in principle, there is
no reason why appropriate parts of the
realization cannot be done connec-
tionistically.

Information-processing abstractions
constitute the content of much AI
theory formation. In the recognition
of the word TAKE, for example, the
information-processing abstractions
in which the theory of word recogni-
tion was couched evidenced the pres-
ence of individual characters. The dif-
ference between the recognition
schemes in the symbolic and connec-
tionist paradigms is in how the evi-
dence is represented. In the symbolic

paradigm, it is represented with
labeled symbols, which permit
abstract rules of composition to be
invoked and instantiated.  In the con-
nectionist paradigm, evidence is rep-
resented more directly and affects the
processing without undergoing any
interpretive process. Describing a
piece of a network as evidence about a
character is a design and explanatory
stance and is not necessarily part of
the actual information processing in
connectionist networks.

As connectionist structures are
built to handle increasingly complex
phenomena, they will have to incor-
porate their own versions of modulari-
ty and composition. Already we saw
such modularity in the moderately
complex word-recognition example.

When—and if—we finally have con-
nectionist implementations solving a
variety of high-level cognitive prob-
lems (say, natural language under-
standing or problem solving and plan-
ning), the design of such systems will
have an enormous amount in com-
mon with the corresponding symbolic
theories. This commonness will be at
the level of information-processing
abstractions that both classes of theo-
ries would need to embody. In fact,
the contributions of many of the nom-
inally symbolic theories in AI are real-
ly at the level of the information-pro-
cessing abstractions to which they
make a commitment and do not rely
on the fact that they were implement-
ed in a symbolic structure. Symbols
have been often used to stand for
abstractions that need to be captured
one way or another. The hard work of
theory making in AI will always
remain at the level of proposing the
right information-processing level
abstractions because these abstrac-
tions provide the content of the repre-
sentations. The decisions about which
of the information-processing trans-

formations are best done using con-
nectionist networks and which using
symbolic algorithms can properly fol-
low once the information-pro-
cessing–level specification is given.
Thus, the connectionist and symbolic
approaches are realizations of the
information-processing–level descrip-
tion, which is more abstract than
either realization.

Architecture-Independent 
and -Dependent Decompositions

We argued earlier that for a given
function, the symbolic and nonsym-
bolic approaches might make rather
different representational commit-
ments. We also just argued, seemingly
paradoxically, that for complex func-
tions the two theories converge in
their representational commitments.
To clarify, think of two stages in the
decomposition of the function: archi-
tecture independent and architecture
dependent. The architecture-indepen-
dent stage is an information-process-
ing theory that can be realized by
either symbolic or connectionist
architectures. In either case, further
architecture-dependent decomposi-
tion decisions need to be made. In par-
ticular, connectionist architectures
offer some elementary functions that
are rather different from those
assumed in traditional symbolic
approaches. Simple functions such as
multiplication are so close to the
architecture level that we only saw
the differences between the represen-
tational commitments of the algorith-
mic and slide rule solutions. Howev-
er, the word-recognition problem is
sufficiently removed from the archi-
tectural level that we saw informa-
tion-processing–level similarities
between symbolic and connectionist
solutions.

Where the architecture-independent
information-processing theory stops
and the architecture-dependent real-
ization starts is not clear. It is an
empirical issue, partly related to the
primitive functions that can be com-
puted in a particular architecture. The
further away a problem is from the
architectures’ primitive functions, the
more important the architecture-inde-
pendent decompositions. The final
performance will, of course, have fea-

Radical connectionism, similar to radical 
symbolicism, seems to demand all of cognition 

as its domain, and we argue that this 
demand cannot be conceded
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tures that are characteristic of the
architecture, such as the softness of
constraints for connectionist architec-
tures.

Learning to the Rescue?

What if connectionism can provide
learning mechanisms such that a net-
work starts without representing any
information-processing abstractions
and learns to perform the task in a
reasonable amount of time; that is, it
discovers the needed abstractions by
learning? In this case, connectionism
can sidestep pretty much all the repre-
sentational problems and dismiss
them as the bane of symbolicism. The
fundamental problem of complex
learning is the credit-assignment
problem, that is, deciding what part of
the system is responsible for either
the correct or the incorrect perfor-
mance in a case so that the learner
knows how to change the system’s
structure. Abstractly, the range of
variation of the system’s structure can
be represented as a multidimensional
space of parameters, and learning can
be viewed as a search in this space for
a region that corresponds to the right
structure of the system. The more
complex the learning task, the more
vast the space in which to do the
search. Thus, learning the correct set
of parameters by search methods that
do not have a powerful notion of cred-
it assignment would work in small
search spaces but would be computa-
tionally prohibitive for realistic prob-
lems. Does connectionism have a
solution to this problem?

In connectionist schemes, a
significant part of the abstractions
needed are built into the architecture
in the choice of input, feedback direc-
tions, allocation of subnetworks, and
semantics that underlie the choice of
layers for the connectionist schemes.
Thus, the input and the initial
configuration incorporate a sufficient-
ly large part of the abstractions need-
ed that what is left to be discovered
by the learning algorithms, although
nontrivial, is proportionately small.
The initial configuration decomposes
the search space for learning in such a
way that the search problem is much
smaller in size. In fact, the space is
sufficiently small that statistical asso-

ciations do the trick. As long as the
space to be searched is not large, as
long as there are no local minima, and
as long as there are enough trials, hill
climbing can find the appropriate
region in the space.

Again, the recognition scheme for
TAKE well illustrates this point. In
the connectionist scheme cited earli-
er, the decisions about which subnet
is going to be largely responsible for T,
which for A, and so on, as well as how
the feedback is going to be directed,
are all essentially made by the experi-
menter before any learning starts. The
underlying information-processing
theory is that evidence about individ-
ual characters is going to be formed
directly from the pixel level, but
recognition of TA is done by combin-
ing information about the presence of
T and A as well as their joint likeli-
hood. The degree to which the evi-
dence about them is combined is
determined by the learning algorithm
and the examples. In setting up the
initial configuration, the designer is
actually programming the architec-
ture to reflect the information-pro-
cessing theory of recognizing the
word. An alternate theory for word
recognition, say, one that is more
holistic than this theory (that is, one
that learns the entire word directly
from the pixels), has a different initial
configuration. Of course, because of a
lack of guidance from the architecture
about localizing the search during
learning, such a network takes much
longer to learn the word. This is pre-
cisely the point: The designer recog-
nized this and set up the configura-
tion so that learning can occur in a
reasonable time. Thus, although the
connectionist schemes for word recog-
nition still make a useful performance
point, a significant part of the leverage
still comes from the information-pro-
cessing abstractions with which the
designer started.

Additionally, the system that
results after learning has a natural
interpretation: The learning process
can be interpreted as having success-
fully searched the space for those
additional abstractions which are
needed to solve the problem. Thus,
connectionism is one way to map
from one set of abstractions to a more
structured set of abstractions. Most of

the representational issues remain,
whether one adopts connectionism for
such mappings. Interesting learning
theories in the symbolic framework
can also be interpreted as starting
with a strong set of abstractions to
which the learning process adds
sufficient new abstractions to solve
the task.

Of course, in human learning,
although some of the necessary
abstractions are programmed in at
various times through explicit
instruction, a large amount of learn-
ing takes place without any designer
intervention in setting up the learning
structure. However, there is no reason
to believe that humans start with a
structure- and abstraction-free initial
configuration. In fact, to account for
the power of human learning, the ini-
tial configurations that a child starts
with need to contain complex and
intricate representations sufficient to
support the learning process in a com-
putationally efficient way. One can-
not avoid the specification of appro-
priate initial structures and still get
complex learning at different levels of
description to take place in less than
evolutionary or geologic time. That is,
connectionism does not offer a royal
road to learning.

Roles of Symbolic and 
Connectionist Processes 

In the study of connectionist and
symbolic processes, three distinctions
can be identified as sharing close
affinity.  The first is the distinction
between  macrophenomena and
microphenomena of intelligence. The
second is the distinction between pro-
cesses that leave markings that last
over time and intuitive or subcon-
scious phenomena occurring in an
instant. The last is the distinction
between symbolic and connectionist
processes. These three distinctions
need to be unpacked a bit to see what
can be allocated to what processes.

Rumelhart, McClelland, and the
PDP Research Group (1986) use the
term “micro-” in the subtitle of their
book to indicate that the connection-
ist theories are concerned with the
fine details of intelligent processes. A
duration of 50–100 milliseconds has
often been suggested as the size of the

WINTER 1988    31



temporal grain for processes at the
micro level. However, certain aspects
of human cognitive behavior actually
evolve over time on a scale of sec-
onds, if not minutes, and have a clear
temporal ordering of the major behav-
ioral states. These processes can be
termed macrophenomena of intelli-
gence.

Perceptual processes such as face
recognition and cognitive processes
such as being reminded are examples
of microphenomena. As an example of
macrophenomena, consider the goal-
directed problem-solving activity that
a system such as General Problem
Solver (GPS) (Newell and Simon 1972)
tries to model. The agent is seen to
have a goal at a certain instant, to set
up a subgoal at another instant, and so
on. Within this problem-solving
behavior, the selection of an appropri-
ate operator, which is typically mod-
eled in GPS implementations as a
retrieval algorithm from the Table of
Connections, could be a micro behav-
ior. Many phenomena of language and
reasoning have a large macro compo-
nent.

Neither traditional symbolic com-
putationalism nor radical connection-
ism has much use for this distinction
because all the phenomena of intelli-
gence, micro and macro, are meant to
come under their particular purview.
We want to present the case for a divi-
sion of responsibility between connec-
tionism and symbolic computational-
ism in accounting for the phenomena
of interest.

Let us take the macro, conscious-
level phenomena first. It seems
inescapable that macrophenomena
have a high degree of symbolic and
algorithmic content, whatever one’s
beliefs about the formal nature of
microphenomena might be. (See
Pylyshyn [1984] for compelling argu-
ments in this regard.) How much of
language and other aspects of thought
require symbol structures can be a
matter of debate, but certainly, logical
reasoning and goal-directed problem
solving such as with GPS are two
examples of such behavior.

What follows is a range of phenom-
ena that seem to have a micro, below-
conscious character, but whose formal
requirements nevertheless place them
largely on the symbolic, algorithmic

side. For example, natural language
sentence comprehension, which gen-
erally takes place instantly or as a
reflex, nevertheless seems to require
such a formal structure. Fodor and
Pylyshyn (1988) argue that much of
thought has the properties of produc-
tivity and “systematicity.” Productiv-
ity refers to a potentially unbounded
recursive combination of thought that
is presumed in human intelligence.
Systematicity refers to the capability
of combining thoughts in ways that
require abstract representation of
underlying forms. Fodor and Pylyshyn
argue that we need symbolic compu-
tations, with their capacity for
abstract forms and algorithms, to real-
ize these properties.

Thus, macrophenomena and
significant parts of microphenomena
not only need the appropriate infor-
mation-processing abstractions avail-
able, but at least parts of them need
the abstractions encoded and manipu-
lated symbolically. Whether the sym-
bolic view needs to be adopted for
implementation of the other parts is
the next question. If any of them can
be identified with microphenomena
that have a particularly appealing con-
nectionist realization, then one might
have an interesting division of respon-
sibility.

Are there such microphenomena?
The symbolic paradigm has tradition-
ally assumed that the symbolic, algo-
rithmic character of the macrophe-
nomena also characterizes the inner
workings of the cognitive processor
that generates the macrophenomena.
Connectionism clearly challenges this
assumption. Radical connectionism,
similar to radical symbolicism, seems
to demand all of cognition as its
domain, and we argue that this
demand cannot be conceded. Never-
theless, the architectures in the con-
nectionist mold offer some elemen-
tary functions which are rather differ-
ent from those assumed in the tradi-
tional symbolic paradigm. In particu-
lar, certain kinds of retrieval and
matching operations and low-level
parameter learning are especially
appropriate elementary functions for
which connectionism offers methods
with attractive properties. Thus, a
number of investigators in macro AI

correctly feel the attraction of connec-
tionist approaches for some parts of
their theory formation, the parts
where one or more of such elementary
functions seem necessary. In a theory
such as GPS, for example, the
retrieval of the appropriate operators
has traditionally been implemented in
a symbolic framework, but a connec-
tionist realization of this retrieval
seems to have useful properties. (As
another example, Anderson and
Mozer [1981] propose a model of
retrieval using spreading activation
[which has a connectionist ring to it],
where the objects of retrieval still
have significant symbolic content to
them. Also, sidebar 3 on connection-
ism and word pronunciation is an
example of connectionism being used
within a largely symbolic framework.)
Connectionism and symbolicism have
different but overlapping domains. A
complete theory that integrates these
domains along the lines suggested
here can be a source for powerful
explanations of the total range of the
phenomena of intelligence.

The proposed division of responsi-
bility echoes in the proposal in
Smolensky (1988) that connectionism
operates at a lower level than the
symbolic, a level he calls subsymbol-
ic. He also posits the existence of a
conscious processor and an intuitive
processor. The connectionist propos-
als are meant to apply directly to the
intuitive processor. The conscious
processor can have algorithmic prop-
erties, according to Smolensky, but
still a large part of the information-
processing activities that were tradi-
tionally attributed to symbolic archi-
tectures really belong in the intuitive
processor.

Nevertheless, the style of integra-
tion proposed leaves a number of
problems to be solved. The first prob-
lem is how to get the symbolic prop-
erties of behavior at or near the level
of consciousness out of the connec-
tionist architecture. Additionally, the
theory cannot relegate conscious
thought to the status of an epiphe-
nomenon. We know that the phenom-
ena of consciousness have a causal
interaction with the behavior of the
intuitive processor. What we con-
sciously learn and think affects our
unconscious behavior slowly but sure-
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ly, and vice versa. What is conscious
and willful today becomes uncon-
scious tomorrow. All this raises a
complex constraint for connection-
ism: It now needs to provide some
sort of continuity of representation
and process so that this interaction
can take place smoothly.

Our account does not merely rele-
gate connectionism to an implemen-
tation status similar to relation
between computer software and hard-
ware. Because the primitive functions
that connectionism delivers are quite
different from those assumed in the
symbolic framework, their availabili-
ty changes theory making for the
overall symbolic process in a funda-
mental way. The theory now has to
decompose the symbolic process to
take special advantage of the power of
connectionist primitives. For exam-
ple, problem-solving theories of
expert behavior might radically differ
if retrieval were to be a large compo-
nent of such theories, making prob-
lem solving by retrieval of past cases
and modification of their solutions an
especially dominant component, as in
case-based reasoning.

It is important to note that this pro-
posal of the division of responsibility
does not mean abandoning the role of
information-processing abstractions
we have been arguing for. One should
be careful about putting too much
faith in connectionist mechanisms.
As we stated earlier, the power for
these operations is going to come
from appropriate encodings that get
represented connectionistically. Thus,
although memory retrieval might
have interesting connectionist compo-
nents,  the basic problem is still to
find the principles by which episodes
are indexed and stored, except that
now one might be open to these
encodings being represented connec-
tionistically.

Finally, we want to address the
comment by Rumelhart et al. (1986)
that symbolic theories are really
explanatory approximations of theo-
ries which are connectionist at a deep-
er level. As an example, they suggest
that a schema or a frame is not really
explicitly represented as such but is
constructed, as needed, from general
connectionist representations. This
suggestion seems plausible but does

not mean that schema theory is only a
macroapproximation. Schema, in the
sense of being an information-process-
ing abstraction needed for certain
macrophenomena, is a legitimate con-
ceptual construct for which connec-
tionist architectures offer a particular-
ly interesting realization. It is not that
connectionist structures are the reali-
ty and that symbolic accounts provide
an approximate explanation; rather, it
is the information-processing abstrac-
tions which contain a large portion of

the explanatory power.

Conclusion

What impact will connectionism have
on AI in general? Much of AI research,
except where microphenomena domi-
nate and symbolic AI is simply too
hard edged in its performance, will
and should remain largely unaffected
by connectionism for two reasons.
First, most of the work is in discover-
ing the information-processing theory

For an example of a connectionist net-
work that is not merely an implemen-
tation of a symbolic algorithm but
also benefits from using appropriate
information-processing abstractions,
consider the PRO system of Lehnert
(1987).

The task is to use a large case base
of words and their pronunciations to
learn to pronounce novel words. Cases
are presented as letter string and
phoneme pairs. Thus, the pronuncia-
tion of the word showtime results in
the sequence of pairs (SH/sh, 
OW/o, T/t, I/i, ME/m). This sequence
is split into triplets, for example,
(OW/o, T/t, I/i, for training. The num-
ber of occurrences of each triplet dur-
ing training is counted.

When a query is presented to PRO,
it generates all possible hypothesis
sequences it can associate with the
word. Note that this output does not
usually contain all possible segmenta-
tions of the input word because most
substrings are not associated with
hypotheses encountered in training.
These hypotheses are linked into a
network, with supporting connections
between hypotheses that correspond
to a particular segmentation of the
word and inhibitory connections
between hypotheses which represent
different uses for the same input let-
ter. A node that Lehnert refers to as a
"context node" is added to the network
wherever three consecutive hypothe-
ses correspond to one of the triples
encountered during training. The acti-
vation levels of the context nodes are
computed based on the number of
occurrences of this triplet. A standard

relaxation algorithm is then applied to
the network to decide which pronun-
ciation to prefer.

This solution shows the same fuzzi-
ness as connectionist solutions inas-
much as the recognition is based on
patterns that emerge from the corpus
of cases. However, the learning is not
done in a standard connectionist fash-
ion. The power of a learning scheme
comes from its capability to success-
fully solve the credit-assignment prob-
lem. PRO makes a statement about
the credit-assignment problem by
using frequency of hypothesis
sequences as the basis of learning.
This approach makes learning much
faster because the necessary abstrac-
tions are already present in the sys-
tem, and credit assignment is focused.
The power of this method for assign-
ing credit comes from the appropriate
information-processing abstractions of
phonetic hypotheses.

At the information-processing level,
this theory states that the appropriate
way to decide how to pronounce a
word is to break it into groups of let-
ters which correspond to phonetic
hypotheses rather than into the obvi-
ous units of individual letters. Fur-
thermore, frequencies of phonetic
hypothesis sequences in a case base
can distinguish which hypotheses to
use. At the architecture level are the
specific relaxation algorithm and the
context nodes. The success of this
method comes from the information-
processing abstractions, and the fuzzi-
ness of the solution comes from the
connectionist architecture.

A Connectionist Solution to the Pronunciation Problem
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of a phenomenon in the first place.
The further the task-level description
is from the phenomenon at the raw
architecture level, the more common
are the representational issues
between the connectionist and sym-
bolic approaches. Second, none of the
connectionist arguments or empirical
results show that the symbolic, algo-
rithmic character of thought is a mis-
taken hypothesis, purely epiphenome-
nal, or simply irrelevant.

Our arguments for and against con-
nectionist notions are not really
specific to any particular scheme.
They are intended to apply to non-
symbolic approaches in general,
including the approaches of Hopfield
and Tank (1985). The work of Reeke
and Edelman (1988) challenges any
form of representationalism, which
requires a separate answer. Within
representationalist theories, however,
it seems that we need to find a way to
deal with three constraints on archi-
tectures for mental phenomena: (1) A
large part of theory making in AI has
to do with the content of mental rep-
resentations. We call them the infor-
mation-processing abstractions.  (2)
Whatever one’s position on the nature
of representations below conscious
processes, it is clear that processes at
or close to this conscious level are
intimately connected to language and
knowledge and, thus, have a large dis-
crete symbolic content. (3) The con-
nectionist ideas on representation
suggest how nonsymbolic representa-
tions and processes can provide the
medium in which thought resides.

From the viewpoint of computer
science, connectionism has done a
useful service in refocusing attention
on alternative models of computation.
However, for much of AI and cogni-
tion, the supposed battle between
connectionism and symbolicism is
mere shadowboxing. Neither of the
theories explains or accounts for all
intelligence or cognition. The task of
building a natural language under-
standing system is not even remotely
complete just because we have a
bucket of connectionist units and
weights or, equally, a universal Turing
machine in front of us. Sure, it is nice
to know they both provide a certain
kind of universality (if, in fact, con-
nectionist architectures do), but

beyond this, it is time to make theo-
ries at a different level of description
altogether.

As said in Chandrasekaran (1986) in
a slightly different context, “There
has been an ongoing search for the
‘holy grail’ of a uniform mechanism
that will explain and produce intelli-
gence. This desire has resulted in a
number of candidate mechanisms
—from perceptrons of the 1960s
through first-order predicate calculus
to rules and frames—to satisfy this
need.” Intelligence is not a product of
any one mechanism, whether at the
connectionist or rule level. Reduc-
tionism, either of the connectionist or
symbolic style, misstates where the
power of intelligence as a phe-
nomenon is coming from. Its power is
a result of cooperation between differ-
ent mechanisms and representations
at different levels of description.
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