Engineering Design through Constraint-Based Reasoning

Niall Murtagh

My dissertation concerns the application of constraint-based reasoning to parametric engineering design (Murtagh 1991). It deals with the practical application of constraint networks, using automated reasoning to overcome some of the blind spots in conventional iterative design.

Parametric engineering design refers to routine-level design (Brown and Chandrasekaran 1985) in which the parameters and variables describing the design object are known, and the problem is one of finding a consistent set of parameter values that conform to specified requirements. It involves converting a well-established symbolic representation of an object, consisting of a set of parameters and variables, into a specific numeric representation. This conversion involves the attachment of numeric values to the parameters and the use of analysis programs to either verify the consistency of these values or eliminate inconsistent values.

Conventional methods of parametric design rely on the iterative reuse of analysis programs to converge on a satisfactory solution. Finite-element and other analysis programs require considerable computer resources; are unidirectional; and are inflexible in that they require a complete reprocessing, irrespective of how small the change is that was made to the previous design description. Furthermore, exact values are required, and imprecise data cannot be dealt with.

My research proposes a general method to minimize the use of the analysis programs and enable bidirectional reasoning by availing of constraint-based reasoning to carry out redesign (Murtagh and Shimura 1990, 1991). A problem solver, consisting of constraint networks that express basic relationships between individual design parameters and variables, is attached to the analysis programs, so that these programs can provide initial values for the parameters. In redesign and optimization, however, the networks alone can then reason about required adjustments to find a consistent set of parameter values.

Interval Propagation

Current parametric engineering design systems can only process problems expressed in terms of exact numbers, mainly because of the requirements of analysis programs. However, constraint networks for propagating exact values can be adapted to hold ranges of values or intervals. Besides the obvious benefit of being able to consider non-exact values, my research shows how the propagation of intervals facilitates the search for a global optimum in continuous, nonmonotonic parameter performance curves, to which conventional hill climbing cannot conveniently be applied. By considering ranges of values simultaneously and determining the approximate maximum and minimum of the performance curve values they produce, it is possible to move more efficiently toward the optimum value than is possible with conventional discrete-value processing. This practical application of interval propagation is compared...
with the theoretical work of Hyvonen (1989). It also gives a different perspective on the redesign methods discussed by Orelup et al. (1988), who proposed variations on conventional hill climbing but always with exact values and repeated analysis.

Test Sessions
A constraint network was implemented with an analysis program for structural concrete design, and design sessions were performed to demonstrate how redundant analysis could be avoided and examine different aspects of the reasoning and propagation strategies provided. Interval propagation is shown to generally enable convergence on a global optimum in a finite number of steps. Although interval propagation is generally useful, it is shown to be more expensive than single-value propagation and is only used where non-monotonic performance functions are involved. When back propagation does not give good dependencies, the reasoning mechanism is shown to resort to a version of hill climbing using forward propagation alone, but it is not necessary to reanalyze at any stage after the initial trial design. The different forms of communication between parameters and variables within the design are compared for accuracy and expense.

Conclusions
My research has shown how the parametric design paradigm can be improved by (1) separating the initial design stage from that of redesign; (2) using reasoning networks to simulate analysis; and (3) using various techniques, including the propagation of intervals, to overcome network cycles. The constraint networks do not replace conventional analysis programs but complement them in a symbiotic system. Thus, it is proposed that the successful combination of representations and strategies is the key to improving the parametric design paradigm.

Acknowledgments
My thanks to Masamichi Shimura, who supervised this work, and the Japanese Ministry of Education for providing a Monbusho Scholarship.

Note
1. To obtain a copy of this dissertation, please contact International Cooperation Section, National Diet Library, Chiyoda-ku 1-10-1, Tokyo 100, Japan, or the author at Mitsubishi Electric Corp., 5-1-1 Ofuna, Kamakura, Kanagawa 247, Japan.

References

Niall Murtagh is a research scientist with Mitsubishi Electric, Kamakura, Japan. His research interests include engineering design, constraint-satisfaction problems, and automated reasoning.
Books Received

New Proceedings from AAAI Press!

First International Conference on Intelligent Systems for Molecular Biology

Edited by Lawrence Hunter, David Searls, and Jude Shavlik

The interdisciplinary work in this proceedings represents original biological results as well as pragmatically-inclined applications of computational research, including work in statistics and databases.

460 pp., index. ISBN 0-929280-47-4

$45.00 softcover

To order, call 415/328-3123 or fax with credit-card information to 415/321-4457 or mail with check, money order, or credit-card information to:

AAAI Press

445 Burgess Drive
Menlo Park, CA 94025

MasterCard and Visa Accepted

Shipping: USA & Canada: $3.50 postage for the first book or report; $1.00 postage for each additional book or report; for orders outside USA and Canada: $6.50 for surface mail or $12.25 for airmail for each book.