
■ The methodological underpinnings of AI are
slowly changing. Benchmarks, test beds, and
controlled experimentation are becoming more
common. Although we are optimistic that this
change can solidify the science of AI, we also rec-
ognize a set of difficult issues concerning the
appropriate use of this methodology. We discuss
these issues as they relate to research on agent
design. We survey existing test beds for agents
and argue for appropriate caution in their use.
We end with a debate on the proper role of
experimental methodology in the design and val-
idation of planning agents.

In recent years, increasing numbers of AI
research projects have involved controlled
experimentation, in which a researcher

varies the features of a system or the environ-
ment in which it is embedded and measures
the effects of these variations on aspects of
system performance. At the same time, two
research tools have gained currency: bench-
marks, precisely defined, standardized tasks,
and test beds, challenging environments in
which AI programs can be studied. In our
view, the move toward more principled
experimental methods is uncontroversially a
good thing; indeed, we are optimistic that it
will solidify the science of AI. However, we
also recognize some issues concerning the
appropriate use of these methods. First,
benchmarks and test beds no more guarantee
important results than, say, microscopes and
Bunsen burners. They are simply part of the
apparatus of empirical AI. It is up to the

researcher to discriminate between uninter-
esting and important phenomena and to fol-
low up reports of experiments with thorough
explanations of their results. Second, there is
little agreement about what a representative
benchmark or test-bed problem is. A third
and related concern is that results obtained
with benchmarks and test beds are often not
general. Fourth, because benchmarks and test
beds are attractive to program managers and
others who provide funding, there is a real
danger that researchers will aim for the pre-
scribed benchmark target when funding is
perceived to be the reward. In sum, we are
concerned that benchmarks and test beds, if
not carefully used, will provide only a com-
fortable illusion of scientific progress—con-
trolled experimentation with reproducible
problems and environments and objective
performance measures—but no generalizable,
significant results.

Benchmarks and test beds serve at least two
different purposes. One is to provide metrics
for comparing competing systems. Compari-
son metrics are valuable for some purposes,
but performance comparisons do not consti-
tute scientific progress unless they suggest or
provide evidence for explanatory theories of
performance differences. The scientific value
of well-crafted benchmarks and test beds is
their power to highlight interesting aspects of
system performance, but this value is realized
only if the researcher can adequately explain
why his or her system behaves the way it does.
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increasingly more controversial as the article
proceeds, and indeed, by the end of the arti-
cle, we will no longer speak with one voice.

Benchmarks and Test Beds
Benchmarks are a common tool in computer
science. In the design of central processing
units (CPUs), for example, matrix multiplica-
tion is a good benchmark task because it is
representative of an important class of
numeric processing problems, which, in turn,
is representative of a wider class of computa-
tional problems—those that do not involve
significant amounts of input-output. The
matrix multiplication problem can be
described precisely and rigorously. Moreover,
matrix multiplication is illuminating: It tells
the CPU designer something interesting
about CPU, namely, its processing speed. In
other words, if we are interested in processing
speed as a measure of performance, then
matrix multiplication is a good benchmark:
Good performance on matrix multiplication
problems predicts good performance on the
large class of numeric tasks for which the pro-
cessor is being designed.

An early benchmark task for AI planning
programs was the Sussman anomaly (the
three-block problem) (Sussman 1975). The
Sussman anomaly helped many researchers
elucidate how their planners worked. It was
popular because like matrix multiplication, it
was representative of an important class of
problems, those involving interactions
among conjunctive subgoals, and it was easy
to describe.

A benchmark is illuminating to the degree
that it tells us something we want to know
about the behavior of a program. Our goals as
scientists, engineers, and consumers dictate
what we want to know. Sometimes we are
most interested in the system’s raw perfor-
mance. In buying a workstation, we might be
impressed with the rate at which a particular
machine performs matrix multiplication.
Likewise, as the potential user of an AI search
algorithm, we might be impressed with the
performance of the min-conflicts heuristic
algorithm on the million-queens problem
(Minton et al. 1990). As scientists and engi-
neers, however, our interests are different. In
these roles, we want to understand why a sys-
tem behaves the way it does. What is it about
the Cray architecture that allows high-perfor-
mance matrix multiplication? Why does the
min-conflicts heuristic algorithm solve
increasingly difficult n-queens problems in
roughly constant time?

The experimental control that can be
achieved with test beds can help us explain
why systems behave as they do. AI systems are
intended to be deployed in large, extremely
complex environments, and test beds serve as
simplified, simulated versions of these envi-
ronments, in which the experimenter has
access to particular aspects of the environ-
ment, and other aspects are allowed to vary
randomly. The experimental process consists
in the researcher varying the features of the
test-bed environment, the benchmark task, or
the embedded system and measuring the
resulting effects on system performance. A
fundamental question exists, however, about
the viability of this approach. The concern
grows out of the tension between realism and
the possibility of experimental control. On the
one hand, controlled experiments seem, at
least currently, to be feasible only for simpli-
fied systems operating in highly idealized envi-
ronments. On the other hand, our ultimate
interest is not simplified systems and environ-
ments but, rather, real-world systems deployed
in complex environments. It is not always
obvious whether the lessons learned from the
simplified systems are generally applicable, but
neither is it obvious how to perform systemat-
ic experiments without the simplifications.

Researchers disagree about how best to pro-
ceed in light of this tension. One approach is
to maintain systematicity in experiments and
look for ways to translate the results of the
experiments into general principles that
apply to more complex systems and environ-
ments. The alternative is to focus on more
realistic systems and environments and to try
to conduct systematic experiments on them
directly. Much of this article focuses on a
comparison of these approaches.

Although benchmarks, test beds, and con-
trolled experimentation are increasingly
important in a number of subareas of AI,
including natural language understanding
and machine learning, we focus our discus-
sion on its role in agent design. We begin, in
Benchmarks and Test Beds, by describing
some of the criteria for good benchmarks and
test beds and discussing some of the potential
difficulties encountered in their design. In
Current Issues in Agent Design, we discuss
the range of features that a test bed for agent
design might have. In Test-Bed Implementa-
tions, we survey existing test beds for agent
design with these features in mind. Finally, in
Discussion, we return to the general issue of
experimental methodology in agent design
and discuss some unresolved questions con-
cerning its use. Our points will become
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Understanding a system’s behavior on a
benchmark task requires a model of the task,
so our goals as scientists and engineers will
often be served only by benchmark tasks that
we understand well enough to model precise-
ly, especially for cases in which we expect a
program to pass the benchmark test. Without
a model of the task, it is difficult to see what
has been accomplished: We risk finding our-
selves in the position of knowing simply that
our system produced the successful behav-
ior—passing the benchmark.

Models are also important when we design
benchmarks to be failed, but in this case, we
need a model of the factors that make the
benchmark difficult. For example, we learn
more about articulation by asking a human to
say “black back brake block” repeatedly than
we do from having the person say the equally
unpronounceable sentence “alckb bcak raebk
lbcko.” Both sentences are extremely difficult,
but the former is more illuminating because
we have models of phonetics that explain
why it is difficult. Experiments can tell us
which design choices lead to good perfor-
mance on benchmark tasks, but we need good
models of these tasks to explain why it is so.
However, building a good model tends to
require a simple problem, and there is always
the danger that a simple problem will not be
especially illuminating.

Benchmarks ideally are problems that are
both amenable to precise analysis and repre-
sentative of a more complex and sophisticated
reality. Unfortunately, the current state of the
field often elevates these problems to a new
status: They become interesting for their own
sake rather than for their help in understand-
ing a system’s behavior on larger, more inter-
esting tasks. Cohen’s (1991) survey of papers
from the 1990 National Conference on Artifi-
cial Intelligence found that 63 percent of the
papers focused on benchmark problems such
as n queens, the Yale shooting problem, and
Sussman’s anomaly. However, few of these
papers made explicit the connection between
the benchmark problems and any other task.
Without this additional analysis, it is difficult
to say whether these problems are representa-
tive of others we presumably care about and,
therefore, exactly why the reported solutions
are themselves interesting.

As AI begins to focus less on component
technologies and more on complete, integrat-
ed systems, these traditional benchmarks
might reveal their limitations. For example,
although we might use n queens to test the
capability and speed of a constraint-satisfac-
tion algorithm embedded in, say, a factory

scheduler, this benchmark will not tell us
whether the quality of a schedule is appropri-
ate given time constraints and other goals of
the program. However, it is far from obvious
that any benchmark can be devised for such a
case. Benchmarks are problems that everyone
can try to solve with his/her own system, so
the definition of a benchmark cannot depend
on any system-specific details, nor can the
scoring criteria. What a researcher learns
about a system from performance on a
benchmark is liable to be inversely propor-
tional to the size, complexity, and specificity
of the system.

Thus, the conscientious researcher, intent
on evaluating a system, faces an uncomfort-
able choice. The behaviors of the system’s
components can be evaluated individually on
benchmark tasks, or the system’s behav-
iors—not necessarily those of individual com-
ponents—can be evaluated by task-specific
criteria. On the one hand, the researcher
learns, say, that the embedded constraint-sat-
isfaction algorithm is extremely slow and
won’t scale up; on the other, he/she learns
that the system nonetheless produces robust,
timely schedules for the particular job shop
modeled. Neither result is likely to evoke
interest outside the researcher’s own laborato-
ry. Why should the rest of us care that an
inefficient algorithm suffices to solve an
applied problem that doesn’t concern us? The
difficulty is that as our attention turns to
integrated programs, benchmark scores for
component processes might be at variance
with or poorly predict task-specific measures.

The potential mismatch between bench-
mark scores and performance on real
tasks is also a concern for researchers

who are developing test beds. Although some
test beds are no more than an interface to
specify parameters of a benchmark problem
and instrumentation to measure perfor-
mance, those described in this article provide
rich environments that present a wide range
of challenges to planners and related AI pro-
grams. You can design a lot of tasks for your
planning system in TILEWORLD, PHOENIX, and
the other test beds discussed here. You can
study a lot of phenomena—real-time satisfic-
ing, graceful degradation under resource
restrictions, path planning and navigation,
sensor fusion, various kinds of learning, and
so on. However, each of these general behav-
iors will be implemented in a particular way
depending on the specific test bed and sys-
tem being developed. Graceful degradation in
a simplified TILEWORLD agent might have little
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agent is usually assumed to possess complete
and error-free information about the state of
the world when it begins planning. Because it
knows what the initial state of the world is,
what actions it intends to carry out, and what
the effects of those actions will be, it can, at
least in principle, predict exactly what the
state of the world will be when it finishes act-
ing. In other words, it knows ahead of time
whether a particular plan will or will not
achieve its goal.

Classical planners embody strong simplify-
ing assumptions both in the sense that their
capabilities (the class of problems they can
solve) tend to be limited and in the sense that
the worlds in which they operate tend to be
small, exhibiting few features and a limited
physics. Planners are generally tested in
domains with few planning operators, on
goals with few conjuncts, and on models of
the world in which few features are explicitly
modeled. Performance tends to degrade when
the number of operators, goal conjuncts, or
environmental features increases. Just as con-
trol means that the planner can, in principle,
prove that its plan will work, the simplifying
assumptions mean that the planner can as a
practical matter generate the proof. Control
and simplifying assumptions, therefore, allow
the planner the luxury of generating provably
correct plans prior to execution time.

Most current work on agent architectures
aims toward relaxing these assumptions.
Reactive systems, for example, deal with the
problem that the world can change unpre-
dictably between plan time and execution
time by deciding what to do at execution
time instead of generating a plan prior to exe-
cution. Case-based planners confront the
simplicity problem by storing only the essen-
tial details of a solution, allowing the planner
to concentrate on the relevant features of a
new problem.

Next we describe some specific issues that
have recently attracted the attention of plan-
ning researchers and, therefore, guide deci-
sions about what features a planning test bed
might exhibit.

Exogenous events: Perhaps the most limit-
ing assumption of the classical planning
worlds (most notably, the blocks world) is
that no exogenous, or unplanned, events can
occur. Relaxing this assumption makes the
process of predicting the effects of plans more
difficult (Hanks 1990b) and also introduces
the need to react to unplanned events as they
occur at execution time (Agre and Chapman
1987; Firby 1989). The time cost of planning
becomes important in a world that allows

in common with what we call graceful degra-
dation in a complex system deployed to per-
form a real task, just as aggressive behavior in
seagulls has little in common with aggressive
behavior in teenage boys. McDermott’s
(1981) wishful mnemonic problem has not
gone away: Two test-bed researchers might
each claim to have achieved graceful degrada-
tion under resource restrictions, but it is more
accurate to say that each has achieved some-
thing that he or she calls graceful degrada-
tion. Test beds make it easier to build pro-
grams that exhibit diverse behaviors, but
researchers have to face the problem of
understanding what like-named behaviors
have in common.

Benchmarks and test beds do not currently
bridge the gap between general and specific
problems and solutions. A gap exists between
the benchmark n-queens problem and anoth-
er, domain-specific problem that you care
about. A gap exists between the test-bed prob-
lem of having too few bulldozers to fight fires
in the PHOENIX simulation and a general
resource-limited planning problem. Those of
us who build and work with test beds appre-
ciate the opportunities they provide to study
many phenomena, but we also recognize the
difficulties involved in finding test-bed–spe-
cific problems that satisfy the criteria of
benchmarks: They are simultaneously repre-
sentative of larger, more interesting problems;
easy to describe; and illuminating.

Current Issues in Agent Design
Despite the difficulties in designing test beds
and perhaps because of the promise associated
with test-bed–based experimentation, a num-
ber of test-bed systems for studying agent
design have been developed to date. In Test-
Bed Implementations, we survey some of
them. This section motivates the survey by
describing some significant research issues in
agent design and noting corresponding fea-
tures that test beds should exhibit. Much cur-
rent research in agent design builds on the
classical planning paradigm that characterized
the field for several years, so our section begins
with a short explanation of this paradigm.

The classical planning paradigm assumes an
environment that is both controlled and sim-
ple. The planning agent is generally assumed
to have complete control over the environ-
ment, which means that its intended actions
are the only events that can change the
world’s state and, furthermore, that the
effects of its actions are fully known, both to
the agent and to the system designer. The
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unplanned changes: The longer the agent
takes to plan, the more likely it is that the
world has changed significantly between the
time the plan was generated and the time it is
executed (Bratman, Israel, and Pollack 1988;
Russell and Wefald 1991; Dean and Boddy
1988).

Complexity of the world: A realistic world
has many features. Even a simple block has
color, mass, texture, smell, and so on,
although many of these features will be irrele-
vant to many tasks. A realistic world also has
a complex causal structure: Changes in one
aspect of the world can change many other
aspects, even though most of those changes
might again be irrelevant to any particular
problem. Reasoning about more realistic
models of the world requires the ability to
represent and make predictions about com-
plex mechanisms (Weld and deKleer 1989) as
well as the ability to recognize and focus
attention on those aspects of the world rele-
vant to the problem at hand (Hanks 1990a).
A test bed for exploring realistically complex
planning problems should itself provide a
complexity and diversity of features.

Quality and cost of sensing and effect-
ing: Sensing and effecting, generally ignored
by the classical planners, are neither perfect
nor cost free. An agent must therefore incor-
porate incorrect and noisy sensor reports into
its predictive model of the world (Hanks and
McDermott 1994) and must plan sensing
actions to improve its state of information,
taking into account both the benefit of the
information and the cost of acquiring it
(Chrisman and Simmons 1991). Thus, a test
bed for studying agent design might be popu-
lated with agents having imperfect sensors
and effectors. The test bed needs to make a
clean distinction between the agent and the
simulated world, the agent’s sensing and
effecting capabilities defining the interface.

Measures of plan quality: Classical plan-
ners are provided with a goal state to achieve,
and they stop when their plans can achieve
this state. However, simple achievement of a
goal state is an inadequate measure of suc-
cess; it does not take into account the cost of
achieving the goal, and it also does not admit
the possibility of partial goal satisfaction.
Haddawy and Hanks (1993) and Wellman
and Doyle (1991) explore the relationship
between goal expressions and utility func-
tions. A test bed for exploring richer notions
of success and failure should allow the
designer to pose problems involving partial
satisfaction of desired states, forcing the plan-
ner to trade the benefits of achieving the goal

against the cost of achieving it. The problem
of balancing cost against solution quality
becomes more difficult when the agent is
actually planning for a sequence of problems
over time, some of which might not even
have been made explicit when it begins to
plan.

Multiple agents: Allowing multiple agents
to act in the world introduces new problems:
how behaviors are coordinated, how the
agents should communicate, how the effects
of simultaneous actions differ from the effects
of those actions performed serially. Multiple-
agent planning is an active research area
(Bond and Gasser 1988), and a test bed for
exploring these research issues must allow
coordinated behavior and communication
among the agents that inhabit it.

In addition to the functions required to
make the test bed challenging, we also identi-
fy some design issues that tend to make a test
bed more useful to prospective users:

A clean interface: It is important to main-
tain a clear distinction between the agent and
the world in which the agent is operating.
The natural separation is through the agent’s
sensors and effectors, so the interface should
be clean, well defined, and well documented.
A designer must be able to determine easily
what actions are available to the agent, how
the actions are executed by the test bed, and
how information about the world is commu-
nicated back to the agent.

A well-defined model of time: Test beds
must present a reasonable model of passing
time to simulate exogenous events and simul-
taneous action and to define clearly the time
cost of reasoning and acting. (This problem is
a general one in simulation and modeling.
See Law and Kelton [1981], for example.)
However, the test bed must somehow be able
to communicate how much simulated time
has elapsed. Making sense of experimental
results requires a way to reconcile the test
bed’s measure of time with that used by the
agent.

Supporting experimentation: Testing an
agent architecture amounts to assessing its
performance over a variety of sample prob-
lems and conditions. Controlled experiments
require that problems and environmental
conditions be varied in a controlled fashion.
A test bed should therefore provide a conve-
nient way for the experimenter to vary the
behavior of the worlds in which the agent is
to be tested. The experimenter must also be
able to monitor the agent’s behavior in the
test-bed world (Langley and Drummond
1990). Although it is far from clear at this
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The experimenter can control the rate at
which these objects appear and disappear as
well as certain characteristics (capacity and
score) of the newly created objects. The abili-
ty to control these parameters is an impor-
tant feature of TILEWORLD because it allows sys-
tematic exploration of worlds with various
characteristics (for example, worlds that
change relatively quickly or slowly). The goal
of such exploration is to find systematic rela-
tionships between world characteristics and
corresponding characteristics of the embed-
ded agent. The TILEWORLD system is distribut-
ed with a basic agent design, which is also
parameterized to allow manipulation by the
experimenter (see the following discussion).

The interface between the agent and the
world allows the agent to take one of four
primitive actions at any time: move left,
move right, move up, and move down. Some
or all of the primitive actions might be infea-
sible at a given time, for example, if an obsta-
cle is blocking the way. The effects of each
action are predetermined and deterministic:
The agent always moves to the appropriate
adjacent cell if it chooses to do so and if the
move is feasible. It never ends up in a differ-
ent cell by accident. Tiles and obstacles are
characterized by their types and their loca-
tion on the grid. Each takes up exactly one
cell. Holes, which can occupy one or more
cells, are characterized by location, capacity,
and score.

Holes, obstacles, and tiles appear and dis-
appear probabilistically, according to parame-
ter settings established by the researcher prior
to any trial. The probabilities are indepen-
dent of one another; a single probability gov-
erns the appearance of tiles, and it is the
same regardless of the time, the location, or
any other parameter in the game.

TILEWORLD has no explicit sensing operators.
The agent is provided with a data structure
that describes the world’s state in complete
detail and with complete accuracy. The use of
this information is left to the designer of the
embedded agent; for example, he or she can
design mechanisms that distort the informa-
tion to introduce inaccuracy.

The researcher describes a world by specify-
ing the size of the grid; the duration of the
game; and the probability parameters govern-
ing the appearance and disappearance rates
of tiles, obstacles, and holes and the distribu-
tion of hole scores and capacities. The experi-
menter can control additional environmental
characteristics; for example, the experimenter
can decide whether hole scores remain con-
stant until the hole disappears or whether the

point what statistics should be used in such
an assessment, the test bed must allow perfor-
mance statistics to be gathered. It is also use-
ful for the data to be formatted automatically
for analysis using statistical software packages.

Test-Bed Implementations
Previous sections provided the motivations
for simulated test-bed worlds and discussed
some of the problems that might be explored
in them. This section surveys several of the
simulated worlds available to the community.
Our survey is not exhaustive, nor is our selec-
tion of test beds meant to imply that they are
the best available. For each test bed, we
describe the sort of world the test bed is sup-
posed to simulate and the research problems
it was designed to test, we discuss the inter-
face between the agent and the world and
that between the researcher and the system
(agent plus world), and we summarize the
main methodological commitments associat-
ed with the test bed.

Grid Worlds
Several test-bed worlds have been organized
around the theme that the agent is situated
in a rectangular two-dimensional grid, and its
main task is to push tiles around the grid. We
first discuss the TILEWORLD of Pollack and
Ringuette (1990), then the independently
developed NASA (National Aeronautics and
Space Administration) TILEWORLD (NTW)
(Philips and Bresina 1991) and the MICE simu-
lator (Montgomery et al. 1992).

Pollack and Ringuette (1990) report on the
TILEWORLD test bed, a system designed to sup-
port controlled experiments with agent archi-
tectures situated in dynamic and unpre-
dictable environments. The world consists of
a rectangular grid on which can be placed the
agent, some tiles, some obstacles, and some
holes. Each object occupies one cell of the
grid. The agent can move up, down, left, and
right unless doing so would cause it to run
into the world’s boundaries or an obstacle.
When a tile is in a cell adjacent to the agent,
the agent can push the tile by moving in its
direction. The agent’s goal is to fill holes with
tiles. Each hole has a capacity C and a score S.
When the agent pushes C tiles into a hole,
the hole disappears, and the trial’s score
increases by S. Each trial has a time limit, and
the agent’s performance is measured by the
trial’s score at its completion.1

The TILEWORLD environment includes
exogenous events: Objects in the world can
appear and disappear during a simulation.
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score decreases over time. To facilitate experi-
mentation, the system provides mechanisms
for specifying suites of experiments, which
can then be run without intervention, and
recording performance data.

Three related qualities characterize TILE-
WORLD: its abstract nature, its simplicity, and
its parameterized nature. TILEWORLD is not an
attempt to model any particular planning
domain; instead, the world might be used to
pose paradigmatic planning problems in the
abstract. It is a simple world that presents the
agent with only a few possibilities for action;
objects have few attributes, and the occur-
rence and effects of exogenous events are not
complex. The world’s simplicity means that a
few parameters define a world instance com-
pletely, and these parameters can be varied as
experiments are performed.

TILEWORLD was originally developed to inves-
tigate a particular agent architecture, IRMA

(intelligent resource-limited machine architec-
ture) (Bratman, Israel, and Pollack 1988), and,
in fact, is distributed to the research commu-
nity with an embedded IRMA agent. IRMA actu-
ally specifies a space of agent architectures; in
other words, there is a range of agent architec-
tures within the IRMA framework. The embed-
ded TILEWORLD agent is parameterized to allow
exploration of the design choices consistent
with the IRMA specifications.

The interface between a TILEWORLD agent
and its environment works as follows:
When the agent wants to perform some

action, it calls the simulator as a subroutine,
specifying the action it wants to perform
along with an indication of the amount of
time that has elapsed since its last call (repre-
senting the amount of time it spent reason-
ing about what to do). The simulator then
updates the world, both to reflect exogenous
events that took place during that period and
to reflect the agent’s new actions. The result-
ing world is then passed back to the agent (in
a data structure called the world).

This approach to agent-environment inter-
face places the responsibility for specifying
sensing and effecting conditions on the agent
designer. If the agent uses the world data struc-
ture directly, it will always have a complete
and correct model. Incomplete or noisy sens-
ing can be achieved by manipulating this data
structure before the agent is allowed to use it.
Similarly, imprecision in effecting change has
to be specified within the agent itself.

NTW (Philips and Bresina 1991; Philips et

al. 1991) is an independently developed test
bed that is also organized around the theme
of a two-dimensional grid with tiles. Exoge-
nous events in NTW consist of winds that can
blow tiles across the grid. NTW has no obsta-
cles or holes.

Two features distinguish the two simula-
tors. First, the NTW simulator has no built-in
measure of success that is analogous to the
notion of a score. What the agent is supposed
to do and what constitutes success is left
entirely to the experimenter. The second is
the nature of the interface between the agent
and its environment. The TILEWORLD agent
calls the simulator as a subroutine and passes
information back and forth using a shared
data structure. The NTW agent and the world
simulator run asynchronously: The agent
posts commands to the world, which are put
in a queue and eventually executed. Opera-
tors can be programmed to fail probabilisti-
cally: A grasp operation might not result in
the agent holding the tile, and a move might
result in the agent being displaced to an adja-
cent location other than the one intended.
The agent is given no indication of whether
an operator has succeeded or failed and must
explicitly sense the world to ascertain the
effects of its actions.

MICE (Montgomery and Durfee 1990; Mont-
gomery et al. 1992) is another grid-oriented
simulator, designed to support research into
coordinating the problem-solving behavior of
multiple autonomous agents. The basic lay-
out of MICE consists only of a grid and various
agents, although agents can be used to simu-
late objects, such as tiles and forest fires.

The basic MICE operator is the move com-
mand, moving the agent from one grid cell to
an adjacent cell. The link command is an
abstract version of a grasp operator; the agent
uses it to pick up objects. The world is popu-
lated only with agents, but they can be
diverse. MICE has no explicit provision for
exogenous events, although they can be sim-
ulated to some extent by implementing
agents that have the desired effects on the
world (making a grid cell wet and slippery to
simulate rain, for example).

The main difference between the MICE simu-
lator and the NTW and TILEWORLD simulators is
that MICE makes even less of a commitment to
a world physics; the experimenter defines an
agent’s sensing and effecting capabilities and
also the effect of actions taken simultaneously
by the agents. MICE might be viewed more as a
framework for building test beds rather than a
simulator in and of itself. (The MICE designers
have built versions of TILEWORLD and PHOENIX
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and effect any change. The simulator enforces
no model of sensing. It provides information
about the world (the characteristics of a cell
in the map, for example) by responding to
messages but does not restrict its answers.
However, the PHOENIX agents have limited
sensory and physical abilities; for example,
bulldozers have a 200-meter radius of view
(although the view is not affected by eleva-
tion), and they move and cut fire lines at
rates codified by the U.S. Forestry Service.

Defining an environment consists of defin-
ing a map—the topographic features for a
land area, including ground cover, elevation,
roads, rivers, and buildings—and processes
within the environment, such as fires and
wind. Defining an agent is generally more
complicated because it involves designing
sensors, effectors, a planner, a reactive com-
ponent, internal maps of the environment,
and so on.

PHOENIX includes an experiment-running
facility that includes a language for specifying
scripts for changes in weather, fires starting,
and other events. It also allows for agents’
behavior to be monitored, producing data
files that can be read by data-manipulation
and statistical packages. The design of the
PHOENIX system is modular, and other test
beds have been developed rapidly by swap-
ping out the Yellowstone map and the
PHOENIX agent definitions and swapping in,
for example, a world of shipping lanes, ports,
docks, ships, and roads.

PHOENIX differs from the previous simula-
tors in that it tries to provide a realistic simu-
lation of a single domain rather than imple-
ment an abstract domain-independent task
environment. Apart from this difference,
however, it is similar to the MICE simulator in
that it enforces few constraints on how
agents and exogenous events can sense or
change the world. The simulator maintains
the map and schedules activities, but, like
MICE, much of the domain’s physics lies in
definitions of the individual tasks.

TRUCKWORLD

TRUCKWORLD (Firby and Hanks 1987; Nguyen,
Hanks, and Thomas 1993) is a multiagent
test bed designed to test theories of reactive
execution (Firby 1989) and provide motivat-
ing examples for a theory of reasoning about
dynamic and uncertain worlds (Hanks 1993;
Hanks and McDermott 1994). The main
commitment is to provide a realistic world
for its agents but without physical sensors or
effectors.2

using this platform. See Montgomery and
Durfee [1990], for example.)

The PHOENIX Test Bed
PHOENIX (Hart and Cohen 1990; Greenberg
and Westbrook 1990) is a framework for
implementing and testing multiple
autonomous agents in a complex environ-
ment. The scenario is fire fighting; the world
consists of a map with varying terrain,
elevations, and weather. Fires can start at any
location and spread depending on the sur-
rounding terrain. Agents are fire-fighting
units (commonly bulldozers) that change the
terrain to control the fires.

It is helpful to distinguish the PHOENIX sim-
ulator from the PHOENIX environment and
PHOENIX agents. The simulator has three main
functions: (1) to maintain and update the
map; (2) to synchronize the activities of the
environment and the agents, which are
implemented as independent tasks; and (3) to
gather data. The PHOENIX environment
includes a representation of Yellowstone
National Park (from Defense Mapping Agency
data) and the tasks that implement fires.
PHOENIX agents generate tasks that simulate a
fire boss, several bulldozers, watchtowers,
helicopters, fuel tankers, and so on. Agent
tasks include moving across the map, cutting
a fire line, predicting the course of fires, plan-
ning the attack on the fire by several bulldoz-
ers, monitoring progress and detecting fail-
ures in expectations, and recovering from
failure. Tasks insert themselves (by sending
messages) onto a timeline maintained by the
PHOENIX simulation. Tasks run intermittently
and sometimes periodically.

PHOENIX agents sense and change the
PHOENIX environment by sending messages to
the object managing the map, but the simula-
tor makes no attempt to control the form of
the messages. Thus, PHOENIX agents have no
predetermined set of operators. The PHOENIX

environment contains only two kinds of
objects: agents and fires. However, each cell
of the map of the environment contains
information that agents and fires use to deter-
mine their behavior. For example, bulldozers
travel quicker on cells that are designated
blacktop road, and fires burn faster in the
direction designated uphill. Exogenous events
are also implemented as tasks and influence
other tasks indirectly. For example, wind
causes fires to burn faster.

Tasks make their effects known by sending
messages to the simulator. The form of these
messages is not restricted; any task can, in
principle, find out anything about the world
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An agent is a truck consisting of two arms;
two cargo bays; several sensors; and various
other components, such as a fuel tank, a set
of tires, and direction and speed controllers.
It operates in a world consisting of roads and
locations. Roads connect the locations, which
are populated with objects. The simulator
itself places few restrictions on the behavior
of objects, which can be complex. TRUCK-
WORLD can model objects such as fuel drums,
which the truck can use to increase its fuel
level; tire chains, which help it drive safely
down slippery roads; vending machines,
which require money and produce a product;
and bombs, which tend to break unprotected
objects in their immediate vicinity.

Exogenous events such as rainstorms occur
periodically in the world. A rainstorm makes
all roads in its vicinity wet, and dirt roads
become muddy for a while. The truck runs
the risk of getting stuck in the mud if it trav-
els on a muddy road without proper tires.
Objects in the vicinity of a rainstorm get wet,
too, which might affect their behavior (a
match might not ignite anymore, a plant
might start growing). The occurrence of
events can depend both on random chance
and on characteristics of the world (rain-
storms might be more likely at certain loca-
tions or at certain times of day).

TRUCKWORLD provides a wide variety of (sim-
ulated) sensors: Cameras report visual fea-
tures of objects, sonars report whether there
is an object at a location, scales report an
object’s weight, and X-ray machines report
on objects within a closed container. Sensors
typically have noise parameters: A camera
sometimes reports an incorrect but close col-
or for an object, and such a report is more
likely at night than during the day. A scale
reports the object’s true weight distorted
according to a user-supplied noise distribu-
tion; a sonar occasionally incorrectly reports
that an object is present.

A variety of communication devices are
available: Radios allow connection among
agents; loudspeakers produce sounds that can
be detected by microphones in the vicinity.
Motion detectors notice when objects appear
or disappear from their immediate vicinity.
Tape recorders are activated when a sound is
produced, and an agent can retrieve the
recorded message later.

Communication between an agent and the
simulator is tightly controlled: Each agent
and the simulator itself run as separate pro-
cesses, communicating over two channels.
The agent performs actions and gets sensor
reports over the command channel and uses

the control channel to manipulate the simu-
lator’s internal state (for example, to connect
or disconnect from the simulator, to advance
the simulator’s clock, or to collect statistics
about the world). Multiple agents communi-
cate using only the communication devices
the world provides for them.

There were two main goals in designing
TRUCKWORLD: (1) to provide a test bed that
generates interesting problems both in delib-
erative and in reactive reasoning without
committing to a particular problem domain
and (2) to provide significant constraints on
the agent’s effecting and sensing capabilities
and on the causal structure of the world but
still allow the system to be extended to meet
the designer’s needs.

TRUCKWORLD occupies a position between
simple abstract simulators such as TILEWORLD

and NTW, a domain-specific simulator such as
PHOENIX, and a test-bed–building platform
such as MICE. TRUCKWORLD implements a spe-
cific set of operators for the agent (unlike
MICE) but provides fewer constraints than do
TILEWORLD or PHOENIX on the nature of the
other objects in the world and on the interac-
tion between the agent and these objects.

Summary
We looked at five systems for implementing
planning test beds: the parameterizable TILE-
WORLD and NTW, the multiagent MICE platform,
the PHOENIX fire-fighting simulation, and the
TRUCKWORLD simulator. Although there are
many differences in what features each sys-
tem offers and what design decisions each
makes, we can identify three main areas in
which the systems differ:

Domain dependence: PHOENIX strives for a
realistic depiction of a single domain, and
TILEWORLD, NTW, and MICE try to describe
abstract worlds and operators that affect the
world. There is an obvious trade-off in this
decision: A researcher using a domain-depen-
dent simulator might be able to demonstrate
that a program is an effective problem solver
in the domain but might have difficulty
going on to conclude that the architecture is
effective for dealing with other domains. A
researcher using an abstract simulator might
be able to build a system based on what he or
she judges to be general problem-solving
principles, but then the difficulty is in estab-
lishing that these principles apply to any real-
istic domain.

Definition of sensors and effectors: The
question arises about whether or to what
extent the simulator should define the
agent’s sensing and effecting capabilities. At
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mainly uncontroversial points: the need for
introducing more rigorous empirical methods
into planning research and the roles that test-
bed environments and benchmark tasks
might play. The question of what the ulti-
mate goal of these research efforts is, as well
as how the goal might best be pursued, is the
subject of some disagreement among the
authors. The following three subsections
reflect this disagreement and represent the
authors’ personal opinions. In the first sub-
section, Hanks argues against a program of
controlled experimentation in small, artifi-
cially simple worlds. Pollack defends such a
program in the second subsection. In the
third, Cohen addresses the problem of gener-
alizing results from test-bed experiments.

The Danger of Experimentation 
in the Small (Steve Hanks)
The planning community has been pushed
(or has pushed itself) in two directions recent-
ly, and these directions seem at odds. We see
pressure to apply our representations and
algorithms to more realistic domains, and at
the same time, we feel the need to evaluate
our systems more rigorously than by
announcing a system’s ability to solve a few
small, carefully chosen problems. The prob-
lem is that programs that operate in more
realistic domains tend to be bigger and more
complicated, and big complicated programs
are more difficult to understand and evaluate.

In writing this article, we agreed on the fol-
lowing two objectives as researchers in plan-
ning: (1) to build systems that extend the
functions of existing systems—that solve larg-
er or more complicated problems or solve
existing problems better—and (2) to under-
stand how and why these systems work. Fur-
ther, running experiments is a good way
(although not the only way) to accomplish
the goal of understanding the systems we
build. We tended to disagree, however, on the
best way to achieve these objectives, in par-
ticular on the issues of what form an experi-
mental methodology should take and what
role it should play in the system-building
process.

Here I discuss a particular methodological
approach, which I call experimentation in the
small. Langley and Drummond (1990) advo-
cate this position in the abstract. Pollack and
Ringuette (1990) and Kinny and Georgeff
(1991) explore it concretely using an imple-
mented test bed and a suite of experiments. I
take the methodological commitments of this
approach to be the following:

First, the researcher conducts experiments

one extreme, we have the PHOENIX simulation,
which does not itself impose any constraints
on environment dynamics or the information
agents can find out about their environment.
All such constraints are specified in the agent
definitions and are merely enforced by the
simulator. MICE and NTW represent the other
extreme: The simulator defines an agent, as
well as a world physics, supplying a set of
sensing and effecting operations as part of the
world. TRUCKWORLD partially defines the truck’s
effecting capabilities; it defines a set of primi-
tive commands, but the exact effect of these
commands depends on the objects being
manipulated. Objects and their interactions
are defined by the experimenter. TRUCKWORLD

does not, however, define a set of sensing
operations. Sensors are objects defined by the
experimenter that happen to send sensory
information back over the command channel.

Parameterizability: TILEWORLD and NTW

have a built-in set of parameters that charac-
terize the behavior of a world. These parame-
ters facilitate experimentation; by varying the
world’s parameters systematically and match-
ing them against various agent designs, one
might be able to come up with agent types
that perform well for particular world types.
The price one pays for this ability to perform
experiments is in simplicity and control. A
world that is fully characterized by a small
number of parameters must be simple, and
furthermore, the parameters must character-
ize completely the nature of the agent’s
behavior in this world. PHOENIX allows the
experimenter to specify values for parameters
such as wind speed and also to write scripts
for how parameters change over time during
an experiment. PHOENIX also provides a mech-
anism called alligator clips for recording the
values of parameters during experiments.

We are again faced with a trade-off: In TILE-
WORLD, NTW, and PHOENIX, one might be able
to demonstrate a systematic relationship
between a world’s characteristics and an
agent’s performance. Such demonstrations,
however, must be supplemented with con-
vincing arguments that these relationships
will be mirrored in a more realistic world, and
it is far from easy to make such arguments. In
TRUCKWORLD, one can demonstrate that the
agent performs well on more complex prob-
lems, but it might be difficult to demonstrate
precisely the reasons for this success and to
apply these reasons to other domains.

Discussion
The discussion to this point has touched on
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in a test-bed world that is significantly sim-
pler than the world in which the agent is ulti-
mately to be deployed. In particular, the
world is supposed to exhibit particular inter-
esting characteristics but will be artificially
simple in other aspects.

Second, the test bed provides a set of
parameters that govern the world’s behavior.
Experimentation is a process of matching
characteristics of the agent’s problem-solving
methods with the world’s parameter values;
the goal of experimentation is to discover
relationships between these two sets of char-
acteristics that predict good (or bad) perfor-
mance.

The main point of my discussion is that
experimentation in small, controlled worlds is
not, in and of itself, an effective way to estab-
lish meaningful relationships between agents
and their environments. I show that the
nature of the relationships established by
these experiments is inherently connected
with the implementation details both of the
agent and of the test-bed worlds. The hard
part remains: generalizing beyond the particu-
lars of the world or even arguing that a partic-
ular test-bed world is appropriate for studying
a particular agent architecture. The experi-
ments themselves do not provide guidance in
this task and might even tend to hinder it.

I use the TILEWORLD test bed and experi-
ments from Pollack and Ringuette (1990) and
Kinny and Georgeff (1991) to make these
points. My goal in doing so is not to single
out this particular work for criticism. I do so,
first, because it’s important to discuss the
concrete results that can be expected from
these experimental endeavors, and second,
these two pieces of work are rare examples of
systematic experimentation with agent archi-
tectures in small, controlled worlds.

The Original TILEWORLD Experiments
The planning agent studied in Pollack and
Ringuette (1990) is an implementation of the
IRMA architecture (Bratman, Israel, and Pollack
1988). One of the key ideas advanced in their
paper is that one way for agents to cope with
a changing environment is to filter out (avoid
considering) options that conflict with their
current intentions (the filtering mechanism)
unless the option is especially promising (the
filter-override mechanism). IRMA also suggests
that the agent separate what to do (delibera-
tion) from how to do it (planning). The TILE-
WORLD agent thus chooses its actions in two
phases: The deliberation phase chooses a hole
to fill (we call it the current hole), then the
planning phase plans a sequence of moves
that can fill the current hole. The agent’s fil-

ter-override mechanism governs when the
agent abandons the current hole in favor of a
new alternative.

The TILEWORLD agent has three components:
First is the filter-override mechanism, a test

applied to a newly appeared hole that deter-
mines whether the task of filling the current
hole should be reconsidered in light of the
new option(s).3 Only one filter-override
mechanism was implemented: a threshold v
such that a new hole would be considered as
an alternative to the current hole just in case
its score exceeded the score of the current
hole by at least v points.

Second is the deliberator, a procedure that
chooses the next hole to work on. Two alter-
natives were implemented. The simpler
(highest score, or HS) deliberator always
chooses the hole with the highest score. The
more complicated (likely value, or LV) delib-
erator divides the hole’s score by an estimate
of the cost of filling it: the sum of the dis-
tances of the n closest tiles, where n is the
hole’s capacity.

Third is the path planner. Given a hole to
fill, the path planner uses breadth-first search
to generate the optimal sequence of moves to
fill it with tiles. The choice of a path planner
was not among the agent parameters varied
experimentally; only the optimal path plan-
ner was implemented.

The experiments show the following
results: (1) An agent that acts in parallel with
reasoning performs slightly better than an
agent that acts and reasons serially. (2) The
more sophisticated LV deliberator performs
somewhat better than the simpler HS deliber-
ator. (3) The filter-override mechanism at best
has no effect on the agent’s performance and,
in some cases, makes it perform worse.

Hanks and Badr (1991) analyze these
experiments in detail. Here, I want to discuss
some issues relevant to the question of what
this experimental paradigm can be expected
to accomplish. In particular, I want to stress
the need for caution in interpreting these
results. There is a large gap between the
effort’s larger goal of establishing general rela-
tionships between agent designs and environ-
mental conditions and the information that
is actually presented in the paper. I don’t see
this gap as a fault of the paper—which pre-
sents preliminary work—but it is important
to keep the results in perspective.

The connection between a general architec-
ture for problem solving (in this case, IRMA)
and the particular results reported must be
interpreted, taking into account many design
and implementation decisions: (1) the way in
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ting examined.
The final result—that the filter-override

mechanism does not generally improve the
agent’s performance—strikes me as the one
most closely related to the specific agent and
environment implementations. Hanks and
Badr recognize the problem that the environ-
ment did not challenge the deliberator, thus
rendering a fast preliminary filtering mecha-
nism unnecessary. They propose making the
environment more challenging, specifically
by making the world change more quickly
(that is, by changing the parameters that gov-
ern the world’s behavior).

Another interpretation of the same result is
that TILEWORLD is inherently not a good test of
an IRMA-like filtering mechanism. The justifi-
cation for a filtering and override mechanism
is that the filter override benefits the problem
solver when deliberation is complex and diffi-
cult but, at the same time, when deliberation
at least potentially benefits the planner sig-
nificantly.

Put another way, deliberation is really a
matter of predicting the future state of
the world and choosing one’s actions to

maximize utility given the predicted future.
The problem with TILEWORLD is that there is
little to predict. Tiles appear and disappear at
random and with no pattern. The effects of
the agent’s actions are localized. On balance,
there is little to be gained from thinking hard
about the world, which Hanks and Badr
(1991) show by demonstrating that there is
little benefit to be had even by implementing
a deliberator that computes the agent’s opti-
mal course of action given current informa-
tion. If deliberation is either easy to do or
doesn’t benefit the agent significantly, then
there is no need for a surrogate for delibera-
tion such as the filter override. Hanks and
Badr mention the possibility of making the
deliberation process more expensive but not
the possibility of changing the world (for
example, giving it more causal structure or
making the agent’s reward structure more
complex) to give more potential payoff to the
deliberation process.

The point of this discussion is to demon-
strate the difficulty of interpreting experi-
mental results such as those reported in Pol-
lack and Ringuette (1990) or, more
specifically, the difficulty associated with
applying the results to any circumstances
other than those under which the experi-
ments were conducted. In the next subsec-

which the IRMA architecture was realized in
the TILEWORLD agent (for example, equating
deliberation with choosing which hole to fill
and planning with generating a sequence of
moves to fill the hole), (2) the implementa-
tion of these modules in the TILEWORLD agent
(for example, what the specific algorithms for
deliberation and path planning are and how
they interact), and (3) the implementation of
the TILEWORLD simulator (for example, the
choice of what environmental parameters can
be varied, the interaction among the different
parameters and between the agent and the
simulator, and the simplifying assumptions
built into the world itself).

Consider the first result, for example, and
the broader conclusions we might be able to
draw from it. TILEWORLD uses a simulated
notion of serial and parallel reasoning. In
fact, the act cycle and reasoning cycle run
sequentially, but they are constrained to take
the same amount of time. Is this implementa-
tion detail important to assess the benefit of
acting in parallel with reasoning? I’m not
sure. In the current implementation, the
agent cannot be interrupted during its rea-
soning cycle by changes to the world that
occur during the concurrent act cycle. This
deviation from truly parallel reasoning and
acting strikes me as significant. In any event,
the speedup result must be interpreted with
an understanding of the particular imple-
mentation and cannot be interpreted more
broadly without further analysis.

The second result, suggesting that the LV
deliberator performs better than the HS delib-
erator, must also be interpreted in the context
of the particular implementation. Hanks and
Badr (1991) note that one part of the TILE-
WORLD agent is the path-planning algorithm,
which (1) solves the problem optimally; (2) is
not subject to experimental variation; and (3)
is written in C, presumably for efficiency rea-
sons. To what extent do the experimental
results depend on the ability to solve the
path-planning subproblem quickly and opti-
mally? Hanks and Badr (1991) show that the
fast path planner has a greater effect on the
system’s performance than does variation in
the deliberator (which was one of the param-
eters varied experimentally). Given this fact,
we should be cautious about interpreting the
experimental result too broadly. Would an
agent actually benefit from a more sophisti-
cated deliberator if it were unable to solve the
path-planning subproblem quickly and opti-
mally? This question would have to be
answered to apply the result beyond the spe-
cific implementation and experimental set-
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tion, I discuss the implications of the general
paradigm of experimentation in the small,
but first, I want to discuss some follow-up
experiments in the TILEWORLD environment.

Subsequent TILEWORLD Experiments    The
experiments in Pollack and Ringuette (1990)
tried to establish a relationship between the
agent’s commitment to its current plan—its
willingness to abandon its current goal to
consider a new option, or boldness as it was
called—and the rate at which the world
changes. Kinny and Georgeff (1991) try to
make this relationship precise and provide
additional empirical support. They begin
their experimental inquiry by further simpli-
fying the test-bed world: “[The TILEWORLD] was
considered too rich for the investigative
experiments we had planned. Therefore, to
reduce the complexity of the object-level rea-
soning required of our agent, we employed a
simplified TILEWORLD with no tiles” (Kinny
and Georgeff [1991], p. 83). The agent’s task

in this simplified TILEWORLD is to move itself
to a hole on the board, at which point it is
awarded the hole’s score. The agent is provid-
ed with perfect, immediate, and cost-free
information about the world’s current state.

Once again, the planning agent is config-
ured around the tasks of deciding which hole
to pursue, deciding which path to take to the
chosen path, and deciding whether to pursue
a new hole that appears during execution.

The agent always chooses the hole with the
highest ratio of score to distance. It adopts a
new hole according to its filter-override poli-
cy, also called its degree of commitment or
degree of boldness. Degree of boldness is a
number b—the agent automatically reconsid-
ers its choice of hole after executing b steps of
its path toward the hole it is currently pursu-
ing. A bold agent, therefore, tends to make a
choice and stick with it. A cautious agent
tends to reconsider more often and is more
likely to abandon its old choice of hole in
favor of a new one.

Another agent parameter is its planning
time, a number p set by the experimenter. The
path planner produces an optimal path to the
current hole, and the planning-time parame-
ter dictates that it took p time units to do so.
It is important to point out two things. First,

the number p bears no necessary relationship
to the amount of time that it actually takes to
generate the plan. Planning time is a constant
set by the experimenter and does not depend
on the time it takes to build a plan for the cur-
rent path. Second, increasing or decreasing p
has no effect on solution quality. Kinny and
Georgeff are not exploring the trade-off
between planning time and plan quality. The
path planner always returns an optimal path;
the planning-time parameter makes it seem
like it took p time units to do so.

A single parameter causes variation in the
world: γ, which is the ratio of the agent’s
clock rate to the rate at which the world
changes. Large values of γ indicate that the
world changes frequently relative to the
amount of time it takes the agent to act. The
agent’s effectiveness is measured by dividing
the number of points the agent actually
scores by the sum of the scores for all the
holes that appear during the game.

The experiments showed various relation-
ships between effectiveness, rate of world
change, commitment, and planning time: (1)
Effectiveness decreases as the rate of world
change (γ) increases. (2) As planning time
approaches 0, an agent that reconsidered its
options (choice of hole) after every step per-
forms better than an agent that never recon-
sidered. (3) As γ increases, an agent that
reconsidered often tends to perform better
than an agent that reconsiders infrequently,
planning time held constant. (4) When the
cost of planning is high, an agent that recon-
siders infrequently tends to perform better
than one that did so frequently, rate of world
change held constant.

These experiments used an agent that
reconsidered its current hole after a fixed
number of steps b. If the agent instead recon-
sidered its choice of path either after b steps
or at the time the target hole disappeared,
then the bold agent outperformed the cau-
tious agent, regardless of the values of p and
γ. Performance was improved further by
reconsidering the choice of target when a
hole appeared closer to the agent than the
current target.4

Once again, I want to point out the diffi-
culty in applying these results to situations
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ence between a bold and a cautious agent, for
example. These general terms are supposed to
suggest an agent’s willingness to reassess its
plan commitments as it executes its plans: A
bold agent rarely reconsiders its plans; a cau-
tious agent does so frequently.5

The two main results from Kinny and
Georgeff (1991) can be stated as follows: First,
it’s a good policy for an agent to be more cau-
tious as the world changes more rapidly. In
other words, planning ahead doesn’t do
much good when the world changes a lot
before the plan is executed or while the plan
is being executed. Second, it’s a good policy
for an agent to rethink its commitment to a
goal when the goal disappears or when a goal
appears that superficially looks more promis-
ing than its current goal. Both results turn
out to be robust, holding as various other
parameters both of the agent and of the
world are varied. Stated this way, the relation-
ships seem pretty straightforward; I would be
surprised to hear about an agent that did not
adopt these policies either explicitly or
implicitly. The question is, therefore, whether
the relationships stated in these general terms
provide significant guidance to those that
build other agents.

Of course, the first relationship can be
restated much more specifically, men-
tioning the agent’s goals (to move to

holes), its problem-solving strategy (to choose
a hole using a heuristic, then plan a path
optimally to the hole, using exactly p units of
time to do so), its definition of boldness (the
number of operators it executes before
replanning), and the nature of its world-
change parameter (the rate at which holes
randomly appear). Interpreted in this light,
the result is much less obvious. It does pro-
vide significant guidance to somebody who
wants to design an agent using the architec-
ture so described, to act effectively in a world
so described, given problems of the sort so
described, but nobody really wants to do it.
Thus, the problem is how to interpret this
more specific relationship in a broader con-
text. What if the agent doesn’t have immedi-
ate, perfect, and cost-free information about
the appearance of holes? What if the designer
does not have an optimal and efficient path
planner at his/her disposal? What if the
appearance of holes is not truly random but
operates according to some richer causal
structure? Do the same relationships still
hold? For that matter, are the same relation-
ships even meaningful?

other than the specific experimental environ-
ment. Doing so requires evaluating what the
simplifications are to TILEWORLD and how they
affect the complexity of the deliberation task,
evaluating how well the definitions of bold-
ness and planning time apply to different
domains, and so on. To what extent does the
last result, for example, depend on the fact
that the agent was provided with complete,
instantaneous, correct, and cost-free informa-
tion about changes to the world?

Analysis How do these experiments
advance the cause of building intelligent
agents? I think it’s clear that the agents pre-
sented in these papers do not, in and of
themselves, constitute significant progress.
Both operate in extremely simple domains,
and the actual planning algorithm consists of
using a shallow estimate of a hole’s value to
focus the agent’s attention, then applying an
optimal algorithm to plan a path to the cho-
sen hole. This strategy is feasible only because
the test bed is so simple: The agent has, at
most, four possible primitive actions; it
doesn’t have to reason about the indirect
effects of its actions; it has complete, perfect,
and cost-free information about the world; its
goals are all of the same form and do not
interact strongly; and so on.

The argument must therefore be advanced
that these experimental results will somehow
inform or constrain the design of a more
interesting agent. Such an argument ulti-
mately requires translating these results into
general relationships that apply to signifi-
cantly different domains and agents, and I
pointed out how tricky it will be to establish
any applicability beyond the experimental
test bed itself. A crucial part of this extensibil-
ity argument will be that certain aspects of
the world—those that the test bed was
designed to simulate more or less realistical-
ly—can be considered in isolation; that is,
studying certain aspects of the world in isola-
tion can lead to constraints and principles
that still apply when the architecture is
deployed in a world in which the test bed’s
simplifying assumptions are relaxed.

Finding a general and useful interpretation
for experimental results is a crucial part of the
process of controlled experimentation. One
immediately faces the trade-off between stat-
ing the relationships in such a way that they
are not so general as to be uninformative and
stating them so that they are not so specific
that they don’t generalize outside the particu-
lar agent and world in which the experiments
were conducted.

Both TILEWORLD papers discuss the differ-
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The main point here is that experimenta-
tion does not provide us automatically with
meaningful relationships between agents and
environments. Claiming that a specific exper-
imental relationship establishes a connection
between boldness and the rate of world
change constitutes a form of wishful think-
ing.6 It translates a specific relationship
between a particular implemented agent and
a particular simulated world into terms that
are intuitive, broad, and imprecise. Giving
intuitive names to these characteristics and to
their relationship does not make them mean-
ingful or broadly applicable. The real contri-
bution of such an analysis would be to come
up with the right way of characterizing the
agent, the world, and their relationship in
terms that are not so specific as to be applica-
ble only to the experimental domain but not
so vague as to be vacuously true. Thus far, the
experimental work has not focused on this
question; in fact, it’s worth asking whether
running experiments in artificially small, sim-
ple worlds is the right place to start looking
for these relationships at all.

Examining Environmental Features in
Isolation   I turn now to the second
assumption underlying experimentation in
the small: A particular characteristic of a real-
istic world can be studied in isolation, and
good solutions to the restricted problem lead
to good solutions in the realistic world. TILE-
WORLD, for example, focuses on unplanned
change in the form of the random appear-
ance and disappearance of tiles and holes (or
just holes in the case of the simplified TILE-
WORLD) but simplifies away other aspects of
the world.

This scaling assumption is absolutely cru-
cial to the whole experimental paradigm, and
I have not seen it defended in the literature.
In fact, the only explicit mention of the
assumption I have found appears in Philips et
al. (1991, p. 1):

We are not suggesting that studies of
these attributes in isolation are sufficient
to guarantee the obvious goals of good
methodology, brilliant architectures, or
first-class results; however, we are sug-
gesting that such isolation facilitates the
achievement of such goals. Working on a
real-world problem has obvious benefits,
but to understand the systems that we
build we must isolate attributes and car-
ry out systematic experimentation.

My own work leads me to believe that it
will be difficult to isolate particular aspects of
a large planning problem. In Hanks (1990b),
for example, I confront the problem of rea-

soning about plans in an uncertain world.
Unplanned, random change—such as tiles
and holes appearing and disappearing—is
one source of uncertainty, but there are oth-
ers: The agent can have incomplete or incor-
rect information about the world’s initial
state, have an incomplete model of its own
actions, and might not have enough to time
to consider explicitly every outcome of its
plan. I see no way to separate one of these
factors from the others in any principled way;
therefore, I see no way that studying the sim-
plified problem of a world in which all uncer-
tainty is the result of unplanned, random
change can shed light on the larger problem
of reasoning about plans in an uncertain
world.

It’s not even clear whether the problem
that the TILEWORLD papers claim to be investi-
gating—the decision of when it is advanta-
geous to act as opposed to deliberate—can be
considered in a context in which all exoge-
nous change is random. The decision about
whether to plan or act depends both on the
world and on the agent’s ability to predict the
world; the better it is at reasoning about the
effects of its actions, the more benefit can be
derived from thinking ahead.

TILEWORLD trivializes the prediction process
by making the world essentially unpre-
dictable: Tiles and holes appear and disappear
at random. The agent, therefore, has no
incentive to reason about what tiles might
appear or disappear or where they might
appear, which greatly simplifies the question
of whether it should deliberate or act. Can we
therefore apply the experimental results
established in TILEWORLD to worlds in which
prediction is a difficult problem?7

Experimentation in the small depends on
the ability to study particular aspects of a
realistic world in isolation and to apply solu-
tions to the small problems to a more realistic
world. I have seen no indication that such
studies can in fact be performed; in fact, nei-
ther TILEWORLD paper argues that random,
unplanned change is a reasonable feature for
isolated study. An experimenter using these
worlds, therefore, runs the risk of solving
problems in a way that cannot be extended
to more realistic worlds and, at the same
time, of making his/her job artificially diffi-
cult for having studied the problem in isola-
tion. Kinny and Georgeff (1991) state that
“[simulated worlds] should ideally capture
the essential features of real-world domains
while permitting flexible, accurate, and repro-
ducible control of the world’s characteristics”
(p. 82). Their proposition is appealing, but
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and (3) the relationship demonstrated experi-
mentally actually constrains or somehow
guides the design of a larger, more realistic
agent. The experimental work I have seen has
addressed none of these questions.

I originally stated that our two objectives
as researchers are (1) building interesting sys-
tems and (2) understanding why they work.
It seems to me that experimentation in the
small adopts the position that these goals
should be tackled in reverse order—that you
can understand how an interesting system
must be built without actually building one. I
don’t believe this case to be so; rather, we
should be building systems and then apply-
ing analytic and experimental tools to under-
stand why the systems did (or did not) work.

The Promise of Experimentation
(Martha E. Pollack)
Steve Hanks believes that experimentation in
the small is a dangerous enterprise. I believe
that to the contrary, controlled experimenta-
tion—small, medium, or large—promises to
help AI achieve the scientific maturity it has
so long sought. In these comments, I try to
defend this belief.

In his section entitled The Danger of
Experimentation in the Small, Hanks begins
by stating that the primary objectives of
those studying agent design are “(1) to build
systems that extend the functionality of exist-
ing systems . . . and (2) to understand how
and why these systems work” (emphasis
mine). I would put the second point some-
what differently and claim that we aim to
understand “how and why such systems can
work.” This change is not a minor matter of
wording but, rather, a fundamental disagree-
ment about research methodology. Hanks
believes that complex-system building must
precede experimental analysis, but I believe
that these two activities can and should pro-
ceed in parallel. Hanks does not object to all
experimentation, only to experimentation in
the small, that is, experimentation using sim-
plified systems and environments. I claim not
only that such experimentation can be infor-
mative, but that given our current state of
knowledge about system design, controlled
experimentation often requires such simplifi-
cations. Thus, in my view, Hanks’s position is
tantamount to an injunction against all
experimentation in AI; in other words, it is a
call for the maintenance of the status quo in
AI methodology.

It is important to be clear about what con-

the fact is we don’t know what it means to
“capture the essential features of real-world
domains,” much less whether it is possible to
do so in a system that allows “reproducible
control of the world’s characteristics.” Con-
ducting experiments in small, controlled
worlds carries with it the responsibility of
considering the implications of the simplifi-
cations that were made to allow the experi-
mentation in the first place.

However at this point, we must remind
ourselves of our ultimate goals: to build sys-
tems that solve interesting problems and to
understand why they do so. Research deci-
sions must be oriented toward solving prob-
lems, not toward satisfying methodological
goals. The ultimate danger of experimenta-
tion in the small is that it entices us into solv-
ing problems that we understand rather than
problems that are interesting. At best, it gives
the mistaken impression that we are making
progress toward our real goal. At worst, over
time it confounds us to the point that we
believe that our real goal is the solution of
the small, controlled problems.

Conclusion In no way should this section
be taken as an argument against using experi-
mental methods to validate theories or pro-
grams. In fact, I think the need for experi-
mentation is manifest; we need to
understand why and how well our ideas and
our architectures work, and we will not
always be able to do so using analytic meth-
ods. Neither am I opposed to conducting
these experiments in controlled, overly sim-
plified worlds. I can imagine, for example, a
researcher implementing some idea in a sys-
tem, then building a small world that isolates
the essence of this idea, then using the small
world to explore the idea further. I object,
however, when attention turns to the experi-
mentation process itself instead of the ideas
that are to be tested and when the assump-
tions inherent in the small world are adopted
without regard to the relationships the world
is supposed to demonstrate.

The ultimate value—arguably the only val-
ue—of experimentation is to constrain or
otherwise inform the designer of a system
that solves interesting problems. To do so, the
experimenter must demonstrate three things:
(1) his/her results—the relationships he/she
demonstrates between agent characteristics
and world characteristics—extend beyond the
particular agent, world, and problem specifi-
cation studied; (2) the solution to the prob-
lem area studied in isolation will be applica-
ble when the same problem area is
encountered in a larger, more complex world;
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stitutes an understanding of how and why
certain autonomous agents work. In my view,
this understanding consists of a theory that
explains how alternative design choices affect
agent behavior in alternative environments;
that is, it will largely consist of claims having
the form, A system with some identifiable
properties S, when situated in an environment
with identifiable properties E, will exhibit
behavior with identifiable properties B.8

The goal of experimentation in AI (and
arguably, a primary goal of the science of AI
taken as a whole) is to elucidate the relation-
ships between sets of properties S, E, and B, as
previously defined. I argue that for experi-
mentation to succeed in meeting this goal,
two types of simplification must be made.
The first type is inherent in the notion of
experimental design. Experimentation neces-

sarily involves selective attention to, and
manipulation of, certain characteristics of the
phenomena being investigated. Such selectiv-
ity and control constitute a type of simplifica-
tion of the phenomena. The second type of
simplification that is currently needed arises
from our existing abilities to build complex
AI systems. Large, complex systems that tack-
le interesting problems are generally not prin-
cipled enough to allow the experimenter to
meaningfully probe the design choices under-
lying them. Moreover, they are designed for
environments in which it might be difficult
or impossible to isolate, manipulate, and
measure particular characteristics. Finally,
these systems do not generally include instru-
mentation to measure their performance,
although it is conceivable that in many cases,
this instrumentation could be added in a fair-
ly straightforward way. Thus, these systems
do not allow the experimenter sufficient
access at least to S and E and, possibly, also to
B; they are, in short, ill suited for controlled
experimentation. In contrast, the kinds of
simplified systems we described in Test-Bed
Implementations, that is, test beds such as
TILEWORLD, NTW, TRUCKWORLD, and PHOENIX and
their embedded agents, are designed specifi-
cally to provide the control needed by the
experimenter.

Hanks correctly notes that the simplifica-
tions required for experimentation introduce

methodological challenges. In particular, he
points out the issue of generalizability: How
can a researcher guarantee that the simplifica-
tions made in the design of an experiment do
not invalidate the generality of the results
obtained? I believe that this issue is a serious
one that poses a significant challenge to AI
researchers. Moreover, I agree with Hanks
that by and large, the controlled experimen-
tation that has been performed to date in
agent design—including my own work—has
not adequately met this challenge. This inad-
equacy, however, is a result of the fact that so
far painfully little controlled experimentation
has been conducted in AI; as Hanks notes,
the TILEWORLD experiments represent relative-
ly “rare examples of systematic experimenta-
tion with agent architectures.”9 It is extreme-
ly difficult and often impossible to have

confidence in the generality of the results
obtained from a few experiments. The desire
for robust, generalizable results should lead
us to do more, not less, experimentation.

The problem of generalizability is not
unique to AI; it is inherent in the experimen-
tal methodology, a methodology that has
been tremendously successful in, and indeed
is the cornerstone of, many other sciences. I
see nothing in AI’s research agenda that
would preclude its also benefiting from con-
trolled experimentation. Of course, adopting
the experimental method entails adapting it
to the particulars of the AI research program.
In my comments to follow, I give some neces-
sarily sketchy suggestions about how we
might adapt the methodology and, in partic-
ular, how the challenge of generalizability
can be met in AI. Following Hanks, I also use
TILEWORLD as an example.

Simplification in Experimentation
“Simplification, paring back the variables, far
from invalidating results, is indeed required
by the foundations of empirical design. The
success of reductionism depends on measur-
ing and reporting only that bit of cloth that
can be understood and tested piecemeal”
(Powers [1991], p. 355).

Experimentation mandates simplification.
In investigating a complex phenomenon, the
experimenter selectively attends to some
aspects of it, namely, those that he/she
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ed to conduct experimentation—to enable
him/her to control and monitor the condi-
tions of the environment and to measure the
behavior of a system embedded in the envi-
ronment. In other words, a useful test bed will
give the researcher a handle on B and on E.

To give the researcher a way to measure B,
the test-bed designer specifies what counts as
successful behavior in the test-bed environ-
ment and provides instrumentation that
measures success. To give the researcher a
way to control and monitor E, the test-bed
designer selects some set of environmental
features and provides instrumentation that
allows the researcher to control these. One
potential objection is that the test-bed
designer thereby influences the experiments
that can be conducted using the test bed;
researchers might want to study other charac-
teristics of B and E than those identified by
the test-bed designer. However, this problem
only exists if researchers are mandated to use
particular test beds. The problem disappears if
we leave the decision about which test bed to
use to individual researchers. A test bed is just
a tool, and it is up to the researcher to deter-
mine the best tool for his/her current task.
Indeed, in some cases, researchers might need
to build their own tools to pursue the ques-
tions of interest to them. It is worth noting,
though, that some test beds might be more
flexible than others, that is, might more read-
ily suggest ways to model a variety of envi-
ronmental features and/or behavioral aspects
and, thus, be more amenable to modification
by the test-bed users. Later, I suggest that
flexibility is one of the strengths of the TILE-
WORLD system.

To this point, I have focused on how a test
bed allows control of B and E. It is, of course,
also necessary for the researcher to have con-
trol of the system features, S. One way to
achieve this control is to use the same kind of
parameterization in an agent embedded in a
test-bed environment as is used in the envi-
ronment itself. One of the more useful fea-
tures of the TILEWORLD system is precisely that
it provides the experimenter with control
over the embedded system as well as over the
environment.

Hanks does not dispute the claim that sim-
plification of the kind provided by test-bed
environments and agents provides experi-
mental control. What worries him is that the
price we might pay for this control is too
high. His main argument is that the simplifi-
cations that provide the needed control also
make it impossible to produce results that are
in any sense real or generalizable, that is, can

believes are relevant to his/her hypotheses.
He/she exerts control over those aspects of
the phenomenon, manipulating them as nec-
essary to test his/her hypotheses. At the same
time, he/she holds constant those influences
that he/she believes are extraneous to his/her
hypotheses and allows or even forces random
variation in those influences that he/she
believes are noise. This selective attention to,
and intentional manipulation of, certain
aspects of the phenomenon is the “paring
back [of] the variables” noted in the previous
quotation.

Does Hanks object to simplification as
such; that is, does he believe that to be use-
ful, a hypothesis about agent design cannot
make reference only to some aspects of an
agent’s architecture or environment?
Although he appears to be inclined toward
this conclusion when he asserts his belief that
“it will be quite difficult to isolate particular
aspects of a large planning problem,” this
objection is not his primary one. Rather,
what he views as dangerous is a particular
way of achieving simplification in research
on agent design, namely, by conducting
experiments using highly simplified agents
operating in highly simplified environments.
This reliance on simplification defines what
he terms “experimentation in the small.”
Hanks’s introductory comments mention
only objections to the use of simplified envi-
ronments, but his criticisms of the TILEWORLD

experiments show that he also objects to the
use of highly simplified agents.

I alluded earlier to my belief that it is nec-
essary to make significant simplifications in
the agents and environments we use in con-
ducting experimentation. Large, realistic sys-
tems have generally been built without the
benefit of a principled understanding of
agent design—precisely what experimenta-
tion (supplemented with theorizing) aims at.
As a result, it is extraordinarily difficult to
determine which mechanisms of these com-
plex systems are responsible for which aspects
of their behavior, in other words, to isolate
the key properties of S and B. It is difficult to
determine what in the system is essential to
the observed behavior and what is instead an
artifact of the way the system happened to be
implemented. In addition, when these sys-
tems are deployed in real environments,
there is no ready way to isolate and control
key features of these environments, that is, to
get a handle on E.

The test beds that we surveyed in Test-Bed
Implementations are designed specifically to
provide the researcher with the control need-
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be shown to be applicable to larger AI appli-
cations. Cohen, Hanks, and I all agree that
this problem, often called realism, is the most
difficult challenge facing researchers on agent
design who adopt the experimental method-
ology we discuss in this article. However, we
disagree about whether this difficulty in
insurmountable.

Toward Realism  The problem of realism is
a challenge for experimentalists—for all
experimentalists, not just those in AI. To
achieve the experimental control they need,
scientists in many disciplines have made use
of simplified systems and have thus had to
address the question of how the lessons they
learn using these systems can be applied to
more complex phenomena. However, the his-
tory of science is full of examples in which
this challenge has been met successfully. For
example, biologists have used the simple
organisms Drosophila and Escherichia coli in
numerous experiments aimed at understand-
ing the fundamental mechanisms of genetics.
The results of these experiments have had
tremendous significance for the theory of
inheritance in all organisms, including
humans. Neurobiologists have used aplysia,
animals with only a few neurons, to conduct
experiments investigating neuroplasticity.
Again, the results have been generalized to
theories about the ways in which human
brains function. As another example, engi-
neers have built systems to simulate natural
phenomena—wind tunnels and wave
machines, for instance. These simulations
abstract away from much of the complexity
of real environments. Nonetheless, experi-
ments conducted using them have provided
many valuable lessons about the effects of the
modeled phenomena on engineered artifacts
such as airplanes.

Of course, merely pointing out that many
other sciences have been able to meet the
challenge of realism is not, in and of itself,
enough to demonstrate that AI researchers
concerned with agent design will be able to
do so. What is needed is a closer look at how
this challenge has been met. A widely used
introductory textbook on statistics describes
the process of achieving realism as follows:

Most experimenters want to generalize
their conclusions to some setting wider
than that of the actual experiment. Sta-
tistical analysis of the original experi-
ment cannot tell us how far the results
will generalize. Rather the experimenter
must argue based on an understanding
of psychology or chemical engineering
or education that the experimental

results do describe the wider world. Oth-
er psychologists or engineers or educa-
tors may disagree. This is one reason
why a single experiment is rarely com-
pletely convincing, despite the com-
pelling logic of experimental design. The
true scope of a new finding must usually
be explored by a number of experiments
in various settings.

A convincing case that an experiment
is sufficiently realistic to produce useful
information is based not on statistics,
but on the experimenter’s knowledge of
the subject-matter of the experiment
(Moore and McCabe 1989, p. 270).

The key to achieving realism lies in the
researcher’s knowledge of the subject
matter; the researcher must provide an

argument, based on his/her understanding of
the subject matter, that, in fact, the experi-
mental results do describe the wider world.
For such arguments to be satisfying, they
must be informed by a rich theory of the
phenomena in question. For the experimen-
tal program to succeed in AI, AI researchers
will need to be more scrupulous about careful
theory development; as I have claimed else-
where (Pollack 1992), our field has not always
valued theory development as an integral
part of our work.

Research into agent design begins with a
theory. Of course, the theory, in whole or in
part, can be informed by the theorist’s previ-
ous experiences with building large, interest-
ing systems. An experimental research pro-
gram on agent design includes the following
components (see Cohen’s [1991] MAD [mod-
eling, analysis, and design] methodology): (1)
a theory describing some aspect(s) of agent
design—particularly, the agent’s architecture,
the environment, and the agent’s behav-
ior—and the purported effect of these design
aspects on agent behavior in certain environ-
ments;10 (2) an implemented test-bed envi-
ronment and a description of the characteris-
tics of the environment; (3) an implemented
agent who will operate in the test bed; and
(4) mappings describing the relationship
between the real phenomena described by
the theory and their intended analogs in the
test-bed environment, the relationship
between the agent architecture described in
the theory and its realization in the imple-
mented agent, and the relationship between
the agent’s design and its performance in the
test-bed world.
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early, prototype test-bed system, and in using
it, my research group and I have not only
learned about agent design but also a great
deal about the test-bed design. These lessons
have led to a number of changes and exten-
sions to the original system, which was
reported on in Pollack and Ringuette (1990).
Here I mention some of these changes; see
also Pollack et al. (1993).

The initial goal in building TILEWORLD was to
study a particular, well-developed theory of
resource-limited reasoning, called IRMA, that
we had previously developed (Bratman, Israel,
and Pollack 1988; Bratman 1987; Pollack
1991). This theory was built on a detailed
philosophical analysis of the role of intention
in managing reasoning; the aim was to inves-
tigate certain underspecified aspects of this
model. In particular, we began with a theoreti-
cally motivated strategy for coping with
changing environments—the strategy of com-
mitment-based filtering. Roughly speaking, this
strategy involves committing to certain plans
and tending to ignore options for action that
are deemed incompatible with these plans.
Filtering can be more or less strict, and we
wanted to determine the environmental con-
ditions under which stricter filtering was more
advantageous. In addition, there are various
ways to realize the notion of strictness, and
we wanted to explore the effects of these alter-
natives on agent behavior in different envi-
ronmental conditions. The environmental
condition that we suspected to be most
important was the average rate of change in
the environment. Details are in Pollack and
Ringuette (1990); this brief sketch is meant to
highlight the fact that underlying our attempt
to relate S (in this case, conditions on filter-
ing), E (average rate of change), and B (the
agent’s overall performance) was a larger theo-
ry about the role of intentions in resource-
limited reasoning.

The experiments that we conducted, as
well as those performed by others using TILE-
WORLD (Kinny 1990; Kinny and Georgeff
1991; Kinny,. Georgeff, and Hendler 1992),
led to each of the kind of results I described
earlier:

First, they provided preliminary confirma-
tion of some parts of the theory. Experimen-
tation showed that strict filtering of incom-
patible options, coupled with an appropriate
overriding mechanism, is viable at least
under some circumstances (Kinny and
Georgeff 1991; Kinny 1990). In other words,
commitment to one’s plans can be a valuable
strategy for managing a changing environ-
ment. Experimentation also suggested needed

Atypical set of experiments will then
evolve from some hypothesis, typically
asserting that under the conditions of

some given environment, some specified
behavior will be observed in agents having
some given architectural characteristics.
Experiments can then be designed using the
implemented (or operationalized) analog of
this hypothesis, relating conditions in the
test bed to observed behavior in the imple-
mented agent. Such experiments can have
several different types of result. They can
confirm, deny, or suggest modifications to
the hypotheses in the underlying theory.
They can suggest needed changes to the test-
bed system or to the mappings between the
actual and the simulated environments. They
can reveal flaws in the way the environment
was modeled. They can suggest needed
changes to the simplified agent or to the
mappings between the actual and the simu-
lated agents. They can reveal flaws in the way
the agent was modeled or the way its behav-
ior was measured. Perhaps most importantly,
they can suggest additional experiments that
should be performed, either using the same
or another test bed and agent.

This last type of result is critical. Experi-
mentation is an iterative process. Part of the
experimental program is to refine the map-
ping between a theory and its realization in
implemented systems. Part of the experimen-
tal program is to iteratively refine the experi-
ments themselves. As Moore and McCabe
(1989, p. 270) put it, “a single experiment is
rarely completely convincing.… The true
scope of a new finding must usually be
explored by a number of experiments in vari-
ous settings.” To facilitate related experi-
ments, great care must be given to the way in
which theories are stated and to the way in
which these theories are operationalized in
experimental settings. Test beds and simpli-
fied agents make it possible to meet the latter
requirement.

The TILEWORLD Experience To make this
discussion more concrete, I want to describe
briefly some of the experiences we have had
in conducting experiments using the TILE-
WORLD system. I focus on TILEWORLD because it
is the experimental work with which I am
most familiar and because Hanks addresses it
in his comments. I do not mean to suggest
that TILEWORLD is the ultimate test bed or one
that all researchers should use in their work.
On the contrary, for reasons I have already
discussed, it is essential that AI researchers
use a variety of test-bed systems in their
experimentation. Moreover, TILEWORLD is an
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modifications to the theory. For example, one
TILEWORLD user, John Oh, pointed out to us
that the agent’s performance is hindered by
its inability to immediately adopt certain
extremely promising options without deliber-
ation. The original theory included a mecha-
nism for short circuiting deliberation to elim-
inate a new option, but it lacked a
mechanism for short circuiting deliberation
to immediately adopt a new option. Thus,
the theory needed to be modified to include a
new mechanism of the latter type.

Second, the experiments suggested needed
changes to the test-bed environment. As Hanks
correctly points out, the original TILEWORLD test
bed was extremely homogeneous—essential-
ly, the world only presented one type of top-
level goal (hole filling). This fact limited the
range of experiments that could be conduct-
ed; there was no way to explore the behavior
of agents who had to perform complex (and,
thus, computationally costly) plan genera-
tion. Since the publication of Pollack and
Ringuette (1990), researchers have increased
the complexity of the TILEWORLD environ-
ment, so that they can study situations in
which a wider range of options are presented
to the agent (Pollack et al. 1993).

Third, the experiments also suggested
needed changes to the agent embedded in
the TILEWORLD environment. Early experi-
ments showed that the simplifications
researchers made in the deliberation and
plan-generation component of the system
were too extreme. Both processes were uni-
formly inexpensive, and we were thus unable
adequately to explore the advantages of the
filtering process, whose intent is to reduce
the amount of deliberation and planning
needed (Pollack and Ringuette 1990). This
limitation subsequently led us to increase the
complexity of the deliberation process. Note
the interaction between this change and the
previous one described; the added complexity
in the agent depended on the added com-
plexity in the environment.

Finally, the experiments suggested a large
number of additional experiments that need
to be conducted to expand and strengthen the
original theory. Hanks, in fact, gives many
examples of such experiments. He wonders
about the significance of the agent’s ability to
perform some planning problems optimally.
He suggests that the degree of (un)predictabil-
ity in an environment might be an important
influence on the value of committing to one’s
plans. He asks, “What if the agent doesn’t
have immediate, perfect, cost-free information
about the appearance of holes? What if the

designer does not have an optimal and effi-
cient planner at his/her disposal?” Questions
such as these are precisely what a theory of
agent design should answer and directly sug-
gest experiments that could be performed
using TILEWORLD or other test-bed systems. We
count as a success of our experience with TILE-
WORLD that it has led a number of researchers
to ask just such questions. Moreover, TILE-
WORLD has proven to be flexible in the sense
that it can readily be modified to support
experiments investigating environmental and
agent-design issues other than those for
which it was originally designed.

One error that we made in the initial TILE-
WORLD experiments was a failure to be precise
enough in the terminology we used to
describe the theory and its realization in the
test bed and simplified agent.11 Instead of
using qualitative terms, we should perhaps
have developed quantitative analyses. For
example, instead of describing environments
as fast or slow relative to some arbitrary base-
line, we might have defined the rate of envi-
ronmental change as the ratio between the
average period of time between changes in
the environment and the average amount of
time it takes an agent to form an arbitrary
plan. Qualitative definitions such as this one
would certainly have facilitated the specifica-
tion of the mapping functions between real
phenomena and the TILEWORLD operational-
ization of them.

It is clear that significant effort must be put
into the development of vocabularies for
describing agents and environments and

their realizations in implemented systems. I
agree completely with Hanks that the real
contribution of this line of research will be
“to come up with the right way of character-
izing the agent, the world, and their relation-
ship.” This goal is the primary purpose of our
ongoing work. However, I disagree strongly
with Hanks when he goes on to claim that to
date the terms used in the TILEWORLD studies
(and in all other experimentation in the
small) are “so specific as to be applicable only
to the experimental domain [or] so vague as
to be vacuously true.”

Consider the TILEWORLD results that he
describes as vacuously true. He states these in
terms of the circumstances under which it is
advantageous to reconsider the plans to
which one has already committed (for exam-
ple, be more inclined to reconsider when the
world is changing more rapidly; reconsider
when your goal becomes impossible). Howev-
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current state of our science.
Although in his comments Hanks focuses

on the difficulties involved in using test beds
and simplified agents in experimentation, in
his conclusion, he supports their use, provid-
ed that the hypotheses toward which they are
directed were inspired by experiences with
particular large-scale systems. Thus, he says
that he is not “opposed to conducting…
experiments in controlled, overly simplified
worlds [and] can imagine, for example, a
researcher implementing some idea in a sys-
tem, then building a small world that isolates
the essence of this idea, then using the small
world to explore the idea further.” Apparent-
ly, Hanks feels that the problem is not in the
use of simplified systems and agents per se
but, rather, in the fact that researchers who
have to date used simplified systems and
agents have been willing to investigate
hypotheses that have been developed apart
from the implementation of any particular
system. Thus, it appears that the primary dis-
pute between Hanks and myself has little to
do with the use of test beds and simplified
systems. We both agree that unprincipled fid-
dling with any systems (large or small) is just
that. Experimentation must build on theoriz-
ing.13 However, Hanks demands that any the-
ory worth investigating must derive directly
from a large, implemented system, but I see
no need for this restriction. Sometimes,
hypotheses about agent design can result
from other avenues of inquiry—such as the
philosophical theorizing that led to
IRMA—and it might be more effective to
explore these theories experimentally before
investing in large, complex systems that
embody them.

Generalization of Test-Bed Results
(Paul R. Cohen)
Much of the preceding discussion touches on
the problem of generalizing results from
research with test beds. I do the reader no ser-
vice by recounting my coauthors’ arguments.
Instead, I try to clarify what test beds are for,
focusing on their role in the search for gener-
al rules of behavior.14 I was struck by Steve
Hanks’s repeated assertion that results from
the TILEWORLD studies are difficult to interpret,
so this assertion serves as the launching point
for my own comments. All empirical results
are open to interpretation. Interpretation is
our job. When we read the results of a study
we have to ask ourselves, What do they
mean? We can answer this question in several
ways. First, we might say, Goodness gracious,
this result deals a deadly blow to the prevail-

er, what is most important about the early
TILEWORLD results is that they support the idea
that commitment is a good idea in the first
place; the results, as described by Hanks, have
to do with refinements to this basic idea. Kin-
ny and Georgeff found that commitment led
to the most effective behavior under all the
conditions they studied, provided the agent
was given a minimal override policy that
allows for reconsideration of goals that have
become unachievable.

The key idea of the IRMA theory is that it
pays for an agent in a dynamic environment
to commit to certain courses of action, even
though the environment might change so
that some of these courses of action cease to
be optimal. Local optimality—always doing
what is best at a given time—must be sacri-
ficed in the interest of doing well enough
overall; commitment to one’s plans generally
rules out local optimality but can help lead to
overall satisficing, that is, good enough,
behavior. Although I cannot restate the entire
argument here (again, see Bratman, Israel, and
Pollack [1988]; Bratman [1987]; Pollack
[1991]), it should be said that this claim is far
from being so obvious that all reasonable peo-
ple would assent to it.12 Hanks says that he
would be “surprised to hear about an agent
that did not adopt these policies,” but in fact,
the recent literature in agent design has been
filled with examples of agents, specifically, the
so-called reactive agents, that are notable pre-
cisely because they do not commit to any
plans; instead, they decide at each point in
time what action is appropriate (Agre and
Chapman 1987; Brooks 1991; Schoppers
1987). A standard attempt to resolve the
debate between those advocating reactiveness
and those advocating deliberativeness has
been to suggest a middle road: Rational agents
sometimes should deliberate about, and com-
mit to, plans, and other times, they should
react more immediately to their environment.
The TILEWORLD experiments conducted to date
can be seen, at least in part, as an attempt to
clarify the conditions under which each alter-
native is desirable.

Conclusion In these comments, I distin-
guished between two kinds of simplification
in experimentation: (1) investigating
hypotheses that focus on particular charac-
teristics of a system, its behavior, and its
environment and (2) using simplified sys-
tems, operating in simplified environments,
to conduct the experiments. I claimed that
the former is essential to all experimenta-
tion, and that although in principle the lat-
ter is not necessary, de facto it is, given the
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ing theory of, say, agent curiosity. Let’s agree
that this response is unlikely for two reasons:
First, we don’t have a theory of agent curiosi-
ty—or a theory of any other agent behav-
ior—and death-dealing empirical results are,
in any case, rare. Second, we might interpret
a study as a chink in the armor of a prevailing
theory; for example, results from astronomy
sometimes are interpreted as troublesome for
the big bang theory. This response, too, is
unlikely because we don’t have any theories
that make predictions for results to contra-
dict. Third, a study might be interpreted as
supporting a prevailing theory, if we had any
theories to support. Fourth, a result might
suggest a theory or just a tentative explana-
tion of an aspect of agent behavior. I interpret
Kinny and Georgeff’s paper in this way, as
weak evidence for the theory that agents
sometimes do better in unpredictable
domains if they are bold. In addition, I have
no sympathy for the complaint that the
paper is difficult to interpret. Interpretation is
our job, especially now when we have no the-
ories to do the job for us. In short, we ought
to ask what our few empirical results
mean—what theories they suggest because we
currently have no theories to provide inter-
pretations—instead of assert strenuously that
they mean nothing.

Let us recognize that empirical results are
rarely general. Interpretations of results
might be general, but results are invariably
tied to an experimental setup. It is wrong to
assert that because Kinny and Georgeff
worked with a trivial test bed, their results
have no general interpretation. I have already
recounted one general interpretation: Bold
agents sometimes do better in unpredictable
domains. Moreover, every substantive word
in this interpretation has a precise meaning
in TILEWORLD. Thus, Kinny and Georgeff could
say, Bold agents sometimes do better in an
unpredictable environment, and here is what
we mean by bold, agent, sometimes, better,
and unpredictable. If you are interested in
our theory, tell us what you mean by these
terms, and let us see if the theory generalizes.

Nothing prevents us from inventing gener-
al theories as interpretations of results of test-
bed studies, and nothing prevents us from
designing additional studies to test predic-
tions of these theories in several test beds. For
example, two students in my research group
explored whether bold PHOENIX agents do bet-
ter as the PHOENIX environment becomes
more unpredictable. The experiment proved
technically difficult because PHOENIX agents
rely heavily on failure-recovery strategies; so,

it is difficult to get them to commit unswerv-
ingly to any plan for long. Their natural state
is bold, and they fail catastrophically when
we make them less so; so, the results were
inconclusive. However, imagine the experi-
ments had succeeded, and evidence was
accrued that boldness really does help
PHOENIX agents when the environment
becomes more unpredictable. Then two
research groups—mine and that of Kinny and
Georgeff—would have demonstrated the
same result, right? Whether you agree
depends on what you mean by the same
result. I mean the following: Kinny and
Georgeff offered a mapping from terms in
their theory (bold, agent, better, sometimes,
unpredictable) to mechanisms in TILEWORLD,
and I offered a mapping from the same terms
to mechanisms in PHOENIX. We both found
that a sentence composed from these
terms—bold agents sometimes do better in an
unpredictable environment—was empirically
true. In reality, as I noted, we were unable to
replicate Kinny and Georgeff’s result. We
failed for technical reasons; there was no easy
way to create a PHOENIX agent that was not
bold. Differences in experimental apparatus
always make replication difficult. For exam-
ple, TILEWORLD has just one agent and a limit-
ed provision for exogenous events; so, it
would be difficult to use TILEWORLD to repli-
cate results from PHOENIX. Still, these prob-
lems are only technical and do not provide a
strong argument against the possibility of
generalizing results from test-bed research.

Test beds have a role in three phases of
research. In an exploratory phase, they provide
the environments in which agents will
behave in interesting ways. During explo-
ration, we characterize these behaviors loose-
ly; for example, we observe behaviors that
appear bold or inquisitive. In exploratory
research, the principal requirement of test
beds is that they support the manifestation
and observation of interesting behaviors,
which is why I favor complex agents and test
beds over simple ones. In a confirmatory
phase, we tighten up the characterizations of
behaviors and test specific hypotheses. In
particular, we provide an operational defini-
tion of, say, boldness so that a data-collecting
computer program can observe the agent’s
behavior and decide whether it is bold. We
test hypotheses about the conditions in
which boldness is a virtue, and when we are
done, we have a set of results that describe
precise, test-bed–specific conditions in which
a precise, agent-specific behavior is good or
bad. In confirmatory research, the primary
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Notes
1. The scoring metric in TILEWORLD was later revised
to make it easier to compare trials of varying
length: Raw score was replaced with a normalized
value called efficiency (Kinny and Georgeff 1991).
A number of changes have been made to the TILE-
WORLD system since 1990, some of which are dis-
cussed in The Promise of Experimentation; see also
Pollack et al. (1993). Code and documentation for
TILEWORLD are available by sending mail to tile-
world-request@cs.pitt.edu.

2. TRUCKWORLD code and documentation are avail-
able by sending mail to truckworld-users-
request@cs.washington.edu.

3. The filtering mechanism itself in the original
TILEWORLD agent is trivial: When the agent is work-
ing on filling a hole, the filter rejects all other
holes; when the agent does not have a current
hole, the filter accepts all holes.

4. In both experiments, the agent was automatical-
ly and immediately notified of the appearance and
disappearance of holes.

5. The terms can be defined precisely within the
IRMA framework—they describe the sensitivity of
the agent’s filter-override mechanism—but presum-
ably the terms and the associated relationships are
intended to be applied to agents other than imple-
mentations of IRMA.

6. Compare McDermott (1981).

7. Chapman (1990) advances an even stronger view
that randomness without structure actually makes
planning more difficult.

8. For similar statements of this research paradigm,
see Cohen, Howe, and Hart (1990); Rosenschein,
Hayes-Roth, and Erman (1990); Pollack and
Ringuette (1990); and Langley and Drummond
(1990). Also see the paper by L. Chrisman, R. Caru-
ana, and K. Carriker from the 1991 AAAI Fall Sym-
posium Series on Sensory Aspects of Robotic Intelli-
gence, “Intelligent Agent Design Issues: Internal
Agent State and Incomplete Perception.” Some
researchers also split out the properties of the
agent’s task; in these comments, I consider the task
specification to be part of the environment, but my
argument does not depend on this consideration.

9. Although I believe the situation is changing;
recent conference proceedings appear to include an
increasing number of experimental papers on agent
design, and in some other subfields of AI, notably
machine learning and text understanding, there are
many such papers.

requirement of a test bed is that it provide
experimental control and make running
experiments and collecting data easy. For this
reason, PHOENIX has a script mechanism for
automatically running experiments and inte-
grated data-collection, data-manipulation, and
statistical packages. In the third phase, general-
ization, we attempt to replicate our results. As I
described earlier, several research groups might
attempt to replicate bold behavior under con-
ditions comparable to those in the original
experiment. Each group will have to design
their own agent-specific, test-bed–specific defi-
nitions of bold and comparable conditions. For
example, uncertainty about the environment
might be induced in agents by rapidly chang-
ing wind speed in PHOENIX and erratically mov-
ing holes in TILEWORLD. To achieve this goal,
test beds would have to be parameterizable,
and researchers woule have to work closely
during the generalization phase.

The boldness theory is general to the extent
that boldness and unpredictability in TILE-
WORLD are phenomena similar to boldness and
unpredictability in PHOENIX and other test beds.
Similar agents in similar test beds are apt to
manifest similar behaviors, but this similarity
does not convince us that the behaviors are
general. Generality is achieved when different
agents in different test beds exhibit common
behaviors in common conditions. The more
the agents and test beds differ, the more diffi-
cult it is to show that behaviors and condi-
tions are common. If we had theories of
behavior, we could show how conditions and
behaviors in different test beds are specializa-
tions of terms in our theories. However, we do
not have theories; we must bootstrap theories
from empirical studies. Our only hope is to
rely on our imaginations and abilities to inter-
pret behaviors and conditions in different test-
bed studies as similar.

In conclusion, I believe results of test-bed
research can be generalized. Some features of
test beds will make it easier to observe,
explain, and test hypotheses about agents’
behaviors. Generalization is done by scientists,
not apparatus, so I strongly disagree with any
implication that particular kinds of test beds
preclude generalization. Test beds offer
researchers the opportunity to tell each other
what they observed in particular conditions.
When a researcher publishes an observation,
other researchers are responsible for the hard
work required to say, I observed the same
thing!
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10. A general question exists about the appropriate
language for the researcher to use in articulating
his/her theory. Sometimes, it will be the language
of mathematics; other times a natural language,
clearly used, can suffice.
11. Another error was the failure to provide a clean
enough interface between the agent and the envi-
ronment; it is more difficult than originally hoped
to excise the IRMA-based embedded agent and
replace it with an alternative. Also, as Hanks points
out, we used an awkward mechanism, which has
since been modified, for simulating concurrent act-
ing and reasoning on a sequential machine.
12. If you don’t believe me, I invite you to listen to
the objections that are raised when I give talks
describing IRMA.
13. An exploratory phase of experimentation can
occur after initial attempts at verifying a particular
theory and can sometimes look like fiddling, but
this area is another matter.
14. Much of what I say arises from conversations
with Bruce Porter of the University of Texas.
Although I owe my current understanding of the
issues to our discussions, I do not mean to imply
that he agrees with everything here.
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