
■ In this article, I describe several challenges facing
the integration of two distinct lines of AI research:
(1) decision-theoretic planning (DTP) and (2) mul-
tiagent systems. Both areas (especially the second)
are attracting considerable interest, but work in
multiagent systems often assumes either classical
planning models or prespecified economic val-
uations on the part of the agents in question. By
integrating models of DTP in multiagent systems
research, more sophisticated multiagent planning
scenarios can be accommodated, at the same time
explaining precisely how agents determine their
valuations for different sources or activities. I dis-
cuss several research challenges that emerge from
this integration, involving the development of
coordination protocols, the reasoning about lack
of coordination, and the predicting of behavior in
markets. I also briefly mention some opportunities
afforded planning agents in multiagent settings
and how these might be addressed. 

The design and control of multiagent sys-
tems is an area of considerable interest in
AI. Increasingly, intelligent agents, in the

course of pursuing their own objectives, are
required to interact with other self-interested
agents. Furthermore, even when each of a
group of agents has identical interests (for
example, when acting on behalf of a single
user or organization), physical or computa-
tional considerations can make it desirable to
have these agents make decisions indepen-
dently (Groves 1973). In broad terms, one
might characterize research in game theory
and multiagent systems as studying mecha-
nisms by which such agents “coordinate” their
activities. 

At the risk of oversimplification, AI research
on planning and decision making in multia-
gent systems can roughly be broken into two
categories:1 First, substantial research has been
devoted to the extension of classical planning
methodology to multiagent systems. In such
work, classical planning assumptions, such as
deterministic actions, complete system knowl-

edge, and specific goals, are adopted, with an
emphasis on coordinating agent activities
either during planning or plan execution. The
SHAREDPLANS model of Grosz and Kraus (1996) is
an example of such a model. Such approaches
allow for sophisticated reasoning on the part of
agents but do not allow for alternative goals of
different value or deal with explicit (quanti-
fied) uncertainty. 

Second, economic models have also proven
popular. In this research, agents are assumed to
have specific valuations for different resources
(which can include the ability to execute their
plans) and interact indirectly through a market
of some type. Wellman’s (1993) work on mar-
ket-oriented programming is an excellent ex-
ample of this approach. These models general-
ly allow agents to have multiple, substitutable
objectives of different values and prescribe
behavioral strategies that (sometimes implicit-
ly) deal with uncertainty in the behavior of
other agents. However, work using economic
approaches generally assumes that agents enter
the market with well-defined valuations, spec-
ified a priori, that influence their behavior (for
example, the prices they are willing to bid in
an auction). Generally, one ignores how these
valuations arise (why a resource is worth a cer-
tain amount to the agent, how the valuation
might change over time or as circumstances
vary, or how the agent obtains alternative
resources). 

Both approaches are useful: Models that
make simplifying assumptions generally allow
one to study interesting aspects of a problem
without getting bogged down in unnecessary
detail. However, the assumptions must be
relaxed when we try to represent and solve
realistic decision problems. Ultimately, models
are required that incorporate both types of rea-
soning: (1) the sequential planning and explic-
it reasoning about coordination that takes
places in planning models and (2) the econom-
ic reasoning and decision- and game-theoretic
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improved behavior afforded by the existence
of other agents. 

I use MDPs as the underlying model to illus-
trate these challenges. Although I don’t delve
into many technical details in this article,
adopting a formal model at the outset helps
make the issues and intuitions I want to con-
vey precise. I initially focus on fully coopera-
tive interactions. In general, however, plan-
ning agents will need to plan in the presence
of noncooperating agents. For this reason, I
also include a few remarks on the use of eco-
nomic models in DTP. 

The remainder of the article is structured as
follows: I first introduce multiagent MDPs and
discuss coordination problems. Next, I des-
cribe the difficulties posed by coordination
problems for sequential decision making and
propose a method for decision making given
the constraints imposed by specific coordina-
tion protocols. I then point out some of the
reasons for wanting to integrate DTP with eco-
nomic models of resource allocation. I con-
clude with a brief mention of some other inter-
esting opportunities that arise when tackling
DTP in multiagent settings.

Multiagent Markov 
Decision Processes

I begin by presenting standard (single-agent)
MDPs and describe their multiagent exten-
sions (see Boutilier, Dean, and Hanks [1999]
and Puterman [1994] for further details on
MDPs). A fully observable MDP M = �S, A, Pr, R�
comprises the following components: S is a
finite set of states of the system being con-
trolled. The agent has a finite set of actions A
with which to influence the system state.
Dynamics are given by Pr : S x A x S → [0, 1];
here Pr(si, a, sj) denotes the probability that
action a, when executed at state si, induces a
transition to sj. R : S → � is a real-valued,
bounded reward function. The state s is known
at all times; that is, the MDP is fully observ-
able. 

An agent finding itself in state st at time t
must choose an action at. The expected value
of a given course of action (defined later)
depends on the specific objectives. A finite
horizon decision problem with horizon T mea-
sures the value of � as 

(where expectation is taken w.r.t. Pr). Infinite
horizon problems can also be defined in this
framework.

For a problem with horizon T, a nonsta-
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trade-offs dealt with in economic models. 
Decision-theoretic planning (DTP) might

provide a middle ground to capture the best
features of both approaches, reflecting the type
of sophisticated reasoning required in realistic
multiagent settings. DTP is currently receiving
significant attention in the AI planning com-
munity, generalizing classical models to deal
with uncertainty in action effects; uncertainty
in knowledge of the system state; multiple
(possibly competing) objectives of different pri-
ority; and ongoing, process-oriented planning
problems (Boutilier, Dean, and Hanks 1999).
These features make it an attractive way to view
multiagent decision problems. Not only does it
generalize classical multiagent planning mod-
els in suitable ways, decision-theoretic model-
ing also permits agents to represent their un-
certainty about the behavior of other agents
and can account for the specific valuations
adopted by agents for different resources and
courses of action. Rather than simply assume
the existence of valuations, the economic
behavior of agents can be related directly to
their domain-level decision processes. 

Unfortunately, there has not been much
work on the application of DTP techniques to
multiagent systems in the AI community.
Conceptually, there is not much difficulty in
formulating multiagent DTP problems.
Arguably, Markov decision processes (MDPs)
(Puterman 1994) are the de facto conceptual
model for DTP problems. Extending MDPs to
the multiagent setting leads more or less
directly to certain general models of repeated
games developed in game theory (Myerson
1991; Shapley 1953). However, even though
the underlying model might be straightfor-
ward, a number of important research chal-
lenges must be addressed in this extension.
These challenges include developing appro-
priate solution concepts for these models of
multiagent systems, exploiting (single-agent)
DTP representational and computational
techniques in multiagent settings, and inte-
grating explicit economic reasoning. 

In this article, I detail some of these chal-
lenges. Specifically, I focus on two key issues
that arise when extending existing models of
DTP to multiagent settings: (1) how one
defines the value of behaving according to cer-
tain coordination protocols and (2) how one
might integrate reasoning about economic
activity with more general planning activities.
Both of these issues involve extending game-
theoretic and economic techniques to situa-
tions involving more general, sequential DTP
models. I also briefly mention a few other chal-
lenges facing DTP and opportunities for

Rather than
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valuations,
the economic
behavior of
agents can be
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their domain-
level decision
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tionary policy � : S x {1…, T} → A associates
with each state and stage-to-go t < T an action
�(s, t) to be executed at s with t stages remain-
ing. An optimal nonstationary policy is one
with maximum expected value at each state-
stage pair. 

A simple algorithm for constructing optimal
policies is value iteration (Puterman 1994).
Define the t stage-to-go value Vt function by
setting V0(si) = R(si) and

Intuitively, Vt(si) denotes the value (the expect-
ed reward accumulated) of being in state si and
acting optimally for t stages. One sets �(si, t) to
be the action a maximizing the right-hand
term, terminating the iteration at t = T. 

MDPs allow one to model planning prob-
lems where action effects are uncertain, and
different objectives have different priorities
and might even conflict. As an example, con-
sider a robot charged with satisfying coffee
requests and delivering mail. It might be
rewarded more highly for satisfying coffee
requests and, all things being equal, will defer
mail delivery until no more coffee is needed.
However, if there is some uncertainty associat-
ed with getting coffee (for example, the robot’s
ability to pour coffee is limited) or if getting
coffee has some nasty side effects (for example,
the robot generally spills coffee on the floor
when it wanders down the hallway), the
expected value of coffee delivery might be
reduced to give mail delivery a higher prior-
ity—it might even be that the robot decides
never to attempt to get your coffee! An MDP
formulation of such a planning problem
allows the robot to make rational trade-offs
involving the risks, rewards, and uncertainty
inherent in the problem.

The Multiagent Extension
Now assume that a collection of agents is con-
trolling the process. For the time being,
assume that each agent has the same objective;
for example, I might have a pair of robots that
can deliver both coffee and mail. The goal is to
define optimal joint behavior for the pair; for
example, having one robot pick up the coffee
and the other the mail will result in the quick-
est user satisfaction. The individual actions of
agents interact in that the effect of one agent’s
actions might depend on the actions taken by
others. I’ll assume for now that the agents are
acting on behalf of some individual; therefore,
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each has the same utility or reward function R.
The system is fully observable to each agent.

I model this system formally as a multiagent
Markov decision process (MMDP). MMDPs are
much like MDPs with the exception that
actions (and possibly decisions) are distributed
among multiple agents. An MMDP M = ��,
{Ai}i��, S, Pr, R� consists of five components.
The set � is a finite collection of n agents, with
each agent i�� having at its disposal a finite
set  Ai of individual actions. An element �a1…
an� of the joint action space � = x Ai represents
the concurrent execution of the actions ai by
each agent i. The components S, Pr, and R are
as in an MDP, except that now they refer to
joint actions �a1… an�

With the joint action space as the set of
basic actions, an MMDP can be viewed as a
standard (single-agent) MDP. Specifically,
because there is a single reward function, the
agents do not have competing interests; so,
any course of action is equally good (or bad)
for all. Optimal joint policies are optimal policies
over the joint action space; these can be com-
puted by solving the (standard) MDP �A, S, Pr,
R� using an algorithm-like value iteration. 

As an example, consider the MMDP il-
lustrated in figure 1. It consists of two agents
a1 and a2, each with two actions a and b that
can be performed at any of the six states. All
transitions are deterministic and are labeled by
the joint actions that induce the transition.
The joint action �a, b� refers to a1 performing a
and a2 performing b and others similarly (with
* referring to any action taken by the corre-
sponding agent). At the source state s1, a1
alone decides whether the system moves to s2
(using a) or s3 (using b). At s3, the agents are
guaranteed a move to s6 and a reward of 5, but
at s2, both agents must choose action a, or
both must choose b, to move to s4 and a
reward of 10; choosing opposite actions results
in a transition to s5 and a reward of –10. The
set of optimal joint policies are those where a1
chooses a at s1 (a2 can choose a or b), and a1
and a2 choose either �a, a� or �b, b� at s2. The val-
ue function determined by solving the MMDP
for the optimal joint policy is the optimal joint
value function and is denoted V~.  The t-stage
value at s1, V

~t(s1), is given by 10[t+1/3].
MMDPs, although a natural extension of

MDPs to multiagent settings, can also be
viewed as a type of stochastic game, as formu-
lated by Shapley (1953). Stochastic games were
originally formulated for zero-sum games only
(which we see alleviates certain difficulties),
but I focus on the (equally special) case of
cooperative games. By allowing each agent to
have a different reward function, an MMDP

Articles

WINTER 1999   37



requires some coordination mechanism. Such a
mechanism restricts an agent’s action choices,
perhaps based on its history. I describe some of
these mechanisms later, including learning
and conventional and communication tech-
niques. 

A coordination problem can be described intu-
itively as any situation in which there is more
than one optimal joint action such that if
every agent selects an individual action that is
part of some optimal action, the resulting joint
action is not guaranteed to be optimal. In such
a case, the agents have to agree—in some
sense—which joint action to adopt because if
they choose independently, they run the risk
of behaving suboptimally. We call the individ-
ual actions available to agent a1 that are part
of some optimal joint action the potentially
individually optimal (PIO) actions for a1. Given
the MMDP in figure 1, a coordination problem
exists at s2 if we focus attention on the imme-
diate reward obtained at the subsequent state.
Each agent has two PIO actions, a and b.3

A coordination mechanism is a protocol by
which agents restrict their attention to (gener-
ally) a subset of their PIO actions in a coordi-
nation problem. A mechanism has a state,
which summarizes relevant aspects of the
agent’s history, and a decision rule for selecting
actions as a function of the mechanism state.
Although such rules often select actions (per-
haps randomly) from among PIO actions,
there are circumstances where non-PIO actions
can be selected (for example, if the conse-
quences of uncoordinated action are severe).

model can provide an even more general set-
ting for studying multiagent interactions (of
which zero-sum games are a special case).2

Interactions that are not fully cooperative are
discussed later.

Coordination Problems and
Coordination Mechanisms

The previous example MMDP has an obvious
optimal joint policy. Unfortunately, if agents
a1 and a2 make their decisions independently,
this policy might not be able to be im-
plemented. There are two optimal action
choices at s2: �a, a� and �b, b�. If, say, a1 decides
to implement the former and a2 the latter, the
resulting joint action �a, b� is far from optimal.
This is a classic coordination problem: There is
more than one optimal joint action from
which to choose, but the optimal choices of at
least two agents are mutually dependent.
Notice that the uncertainty about how the
agents will play s2 makes a1’s decision at s1
hard to evaluate (this issue will be taken up lat-
er). In the intuitive example of mail-
coffee–delivery robots, there can be situations
in which it is just as good for either robot to
get the coffee (and the other to get the mail),
but if both start heading toward the mail
room, coffee delivery will be delayed. 

In the absence of a central controller that
selects a single joint policy to be provided to
each agent, ensuring coordinated action
choice among independent decision makers
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Figure 1. A Simple Multiagent Markov Decision Process with a Coordination Problem.



Mechanisms can guarantee immediate coordi-
nation or eventual coordination or provide no
such assurances. To illustrate, I list some sim-
ple (and commonly used) coordination meth-
ods. Several of these are learning mechanisms,
whereby coordination is achieved through
repeated interaction. 

Randomization 
Randomization is a learning mechanism that
requires agents to select a PIO action randomly
until coordination is achieved (that is, an op-
timal joint action is selected by the group). At
this point, the agents play the optimal joint
action forever. Assume that actions are selected
according to a uniform distribution. The
mechanism has k + 1 states, one denoting
coordination on each of the k optimal joint
actions and one denoting a lack of coordina-
tion; it changes to a coordinated state once the
corresponding optimal action is played. Often
only two mechanism states need to be distin-
guished—(1) coordinated and (2) uncoordi-
nated—if all coordinated values are identical.4

The randomization protocol clearly guarantees
eventual coordination at a rate dictated by the
number of agents and the number of choices
available to them. We can view this protocol as
a finite-state machine (FSM). The FSM for the
coordination problem at s2 in figure 1 is (par-
tially) illustrated in figure 2. A related tech-
nique is fictitious play, a learning technique
commonly studied in game theory (Fudenberg
and Levine 1998; Brown 1951) that can be
applied to fully cooperative games (Boutilier
1996; Monderer and Shapley 1996). Unlike
randomization, it leads to faster coordination
as the number of agents and actions increase
(Boutilier 1996).

Lexicographic Conventions
Conventions or social laws (for example, dri-
ving on the right-hand side of the road) are of-
ten used to ensure coordination (Shoham and
Tennenholtz 1992; Lewis 1969). Lexicographic
conventions can be applied to virtually any
coordination problem. Given some commonly
known total ordering of both agents and indi-
vidual actions, the set of optimal actions can
totally be ordered in several different ways.
Lexicographic conventions ensure immediate
coordination but can have substantial over-
head because they require that each agent
have knowledge of these orderings. This might
be reasonable in a fixed setting but might be
harder to ensure over a variety of decision
problems (for example, involving different
collections of agents). In contrast, the learning
models described earlier can be viewed as

metaprotocols that can be embodied in an
agent once and applied across multiple deci-
sion problems. 

Communication
A natural means of ensuring coordination is
through some form of communication. For
example, one agent might convey its intention
to perform a specific PIO action to another
agent, allowing the other agent to select a
matching PIO action. There are a number of
well-known difficulties with devising commu-
nication and negotiation protocols, involving
issues as varied as synchronization and noisy
channels. I do not delve into such issues here,
but even when some agreed-on negotiation
protocol is in place, realistically, communica-
tion has some cost, some risk of failure or mis-
interpretation, and delays the achievement of
goals in a way that must be modeled if optimal
behavior is to be attained. As such, I would
claim that one must model communication
using actions in an MMDP that have effects
not on the underlying system state but on the
“mental state” of the agents involved.
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Figure 2. A Simple Finite-State Machine for the Randomization Mechanism.
The solid arrows denote state transitions, labeled by input (observed joint

actions); the dashed arrows indicate output (action choices).
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��, ��, where � is some system state, and � is
the state of the randomization mechanism.
More precisely, given the FSM defining the
randomization protocol in figure 2, the possi-
ble states of the mechanism are U (the agents
are uncoordinated), A (the agents have coordi-
nated on joint action �a, a� and B (they have
coordinated on �b, b�).Transitions induced by
actions are clear: Each action causes a system
state transition as in the MMDP, but the
mechanism state changes from U to A or B
only if the agents choose action �a, a� or �b, b� at
s2 (and never reverts to U). The coordination
protocol also restricts the policies the agents
are allowed to use at s2. If they find themselves
at (expanded) state �s2, U�, they must random-
ize over actions a and b. As such, the transition
probabilities can be computed easily: �s2, U�
moves to both �s4, A� and �s4, B� with probability
0.25 and moves to �s5, U� with probability 0.5.
Note that the protocol has nothing to say
about choices at states other than s2.

The expanded MMDP is essentially the
cross-product of the original MMDP and the
FSM defining the protocol. The protocol
restricts choices at the state where a coordina-
tion problem exists, but otherwise, actions can
be chosen in any way that maximizes expected
value. Specifically, optimal policy-construction
algorithms such as value iteration can be
applied to the expanded MDP. In this example
(using C to refer to mechanism states A or B),
we have Vt �s2, U� < Vt �s3, U� or all stages t < 8,
but Vt �s2, U� � Vt �s3, U� for t � 8. Thus, if the
agents have not coordinated with eight or
more stages to go, a1 will still opt in at s1 and
move to s2 but will avoid s2 with fewer than 8
stages to go. This example shows how knowl-
edge of the state of the coordination mecha-
nism allows the agents to make informed judg-
ments about the (long-term) benefits of
coordination, the costs of miscoordination,
and the odds of (immediate or eventual) coor-
dination. With a sufficient horizon, the short-
term costs are worthwhile given the long-term
expected payoffs.

In Boutilier (1999), I describe a general val-
ue-iteration algorithm that takes as input an
MDP and a coordination mechanism and con-
structs an optimal policy subject to the con-
straints that coordination problems are re-
solved using the specific coordination
mechanism. This model is able to associate a
well-defined sequential value to MMDP states
by incorporating the mechanism state where
necessary. Shapley’s (1953) stochastic games
provide a related sequential multiagent deci-
sion model with a well-defined value for game
states. This value, however, is a consequence of

Sequential Optimality with
Coordination Problems

Coordination problems arise at specific states
of an MMDP but must be considered in the
context of the sequential decision problem as
a whole. It is not hard to see that coordination
problems such as the one at s2 in  figure 1 make
the joint value function misleading. For exam-
ple, V~1(s2) = 10 and V~1(s3) = 5,  suggesting that
a1 should take action a at s1 with 2 stages to
go. However, V~1(s2) assumes that the agents
will select an optimal, coordinated joint action
at s2. As discussed earlier, this policy might not
be able to be implemented. Generally, V~ will
overestimate the value of states at which coor-
dination is required and, thus, overestimate
the value of actions and states that lead to
them.

A more realistic estimate V1(s2) of this value
would account for the means available for
coordination. For example, if a lexicographic
convention were in place, the agents are
assured of optimal action choice, whereas if
they randomly choose PIO actions, they have
a 50-percent chance of acting optimally (with
value 10) and a 50-percent chance of miscoor-
dinating (with value –10). Under the random-
ization protocol, V1(s2) = 0 and V1(s3) = 5,
making the optimal decision at s1, with two
stages to go, opting out of the coordination
problem—a1 should choose action b and
move to s3. 

Unfortunately, pursuing this line of rea-
soning (assuming a randomization mech-
anism for coordination) will lead a1 to always
choose b at s1, no matter how many stages
remain. If we categorically assert that V1 (s2) =
0, we must have that Vt (s3) > Vt (s2) for any
stage t � 1. This  reasoning ignores the fact
that the coordination mechanism in question
doesn’t require the agents to always random-
ize: Once they have coordinated at s2, they can
choose the same (optimal) joint action at all
future encounters at s2. Clearly, V1(s2) depends
on the state of the coordination mechanism. If
the agents have coordinated in the past, then
V1(s2) = 10 because they are assured coordina-
tion at this final stage; otherwise, V1(s2) = 0. By
the same token, Vt(s2) depends on the state of
the mechanism for arbitrary t � 1, as does the
value of other states. 

The optimal value function V is not a func-
tion of the system state alone; it also depends
on the state of the mechanism. By expanding
the state space of the original MMDP to
account for this, we recover the usual value
function definition. In this example, I define
the expanded MMDP to have states of the form
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the zero-sum assumption, which removes the
reliance of state value on the selection of a
(stage game) equilibrium. In particular, it does
not apply to fully cooperative settings where
coordination problems arise.5

Design of 
Coordination Protocols

By casting the coordination problem in a
sequential framework, one can pose inter-
esting questions about the design of specific
coordination mechanisms and how well they
can be expected to perform for the class of
decision problems an agent is expected to face.
The value of imposing a given coordination
protocol can be defined using the value func-
tion induced in a given MMDP when the pro-
tocol is adopted. There might be costs associat-
ed with imposing the protocol, but these costs
can be weighed against any potential advan-
tages (gain in performance).

As an example, a lexicographic protocol
might induce immediate coordination. The
increase in expected value over, say, a random-
ization protocol can be measured precisely in
the expanded state model and used to decide
whether the overhead required to incorporate
the convention is worthwhile. For any specific
decision problem and collection of agents, it
can be hard to justify the use of a randomiza-
tion protocol. However, when the collection of
agents (and their corresponding abilities)
change over time, ensuring the feasibility of a
lexicographic protocol can be difficult. In this
sense, a randomization protocol can be consid-
ered a metaprotocol: It applies to a wide range
of situations and does not need to be prede-
fined. Similarly, endowing agents with the
ability to communicate their intended actions
can be evaluated by trading off the object val-
ue of an MMDP (or class of MMDPs) with the
costs associated with providing agents with
communication apparatus, appropriate negoti-
ation protocols, and so on.

One can also address the problem of de-
signing robust, computationally effective, and
value-increasing coordination protocols in the
framework. In a certain sense, such an under-
taking can be viewed as one of designing social
laws (Shoham and Tennenholtz 1992). It is also
related to the issues faced in the design of pro-
tocols for distributed systems and the distrib-
uted control of discrete-event systems (Lin and
Wonham 1988). However, rather than design-
ing protocols for specific situations, metaproto-
cols that increase value over a wide variety of
coordination problems would be the target.

Economic Methods 
of Coordination

A great deal of attention has been paid to the
development of economic models and proto-
cols for the interaction of agents in distributed
and multiagent systems. Often, agents need
access to specific resources to pursue their
objectives, but the needs of one agent might
conflict with those of another. A number of
market-based approaches have been proposed
as a means to deal with the resource allocation
and related problems in multiagent systems
(Wellman et al. 1998; Sandholm 1996). Of par-
ticular interest are auction mechanisms, where
each agent bids for a resource according to
some protocol, and the allocation and price for
the resource are determined by specific rules
(McAfee and McMillan 1987). Auctions have a
number of desirable properties as a means for
coordinating activities, including minimizing
the communication between agents and, in
some cases, guaranteeing Pareto efficient out-
comes (Wellman et al. 1998; McAfee and
McMillan 1987). 

Of considerable recent interest is devising
auction mechanisms for dealing with resources
exhibiting “complementarities”—that is, one
resource has no value without another—and
substitutability—that is, one resource can be
used in place of another. Research in combina-
torial auctions and simultaneous actions
(Rothkopf, Pekec̆, and Harstad 1998; Rassenti,
Smith, and Bulfin 1982; Rothkopf 1977)
addresses such issues.

In sequential decision making under uncer-
tainty, say, that involves the solution of an
MDP, an agent generally considers a number of
potential courses of action and settles on the
one with the highest expected utility. Howev-
er, when different courses of action require dif-
ferent collections of resources to be imple-
mented, an agent must also plan to obtain
these resources. It is clear that planning agents
often require complementary resources and
those that can be substituted. For example,
being allocated trucks without fuel or drivers
renders the trucks worthless because they can-
not be used to transport goods (that is, pursue
the course of action for which they were
required). By the same token, once trucks and
drivers are obtained for transporting material
in an optimal fashion, helicopters and pilots
lose any value they might have had. 

If these resources are allocated using a mar-
ket-based mechanism, such as an auction,
then an MDP formulation of a DTP problem
can be viewed as providing a framework from
which the economic valuations associated
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must eventually account for the fact that
agents do not always enter markets with clear
(or unchanging) valuations. It often makes
sense for an agent to execute part of a domain-
level plan to see if some uncertainty is resolved
before committing to the purchase of specific
resources. If a course of action has a particular
outcome, a specific resource might have very
different value to the agent, in which case it
might pay to put off bidding for a resource. Of
course, if anticipated demand for the resource
is expected to increase over time, it might be
wise to obtain it beforehand. Economic proto-
cols that are designed to account for the
sequential nature of an agent’s policy, and the
inherent uncertainty in many courses of
actions, will offer increased value to all parties
involved. 

Concluding Remarks
Apart from the challenges mentioned previ-
ously, a number of other opportunities present
themselves to agents that are required to plan
in settings where other agents are present.
Many of these issues have been explored in the
multiagent systems and distributed AI commu-
nities (see, for example, Rosenschein and
Zlotkin [1994] for a treatment of several of the
issues described here). It is important that they
also be explored with the framework of DTP
and that the decision processes involved be
integrated with domain-level planning. 

An agent can often discover joint courses of
action that have higher expected value than
any individual plan through team or coalition
formation. By acting together, a team of agents
can often achieve more desirable objectives
than they could by acting individually. A relat-
ed way in which the presence of other agents
can help a planning agent is contracting: Paying
an agent to perform a task for which the plan-
ning agent is ill suited, a planning agent can
satisfy objectives it might otherwise have to
forego. Of course, the design of appropriate
communication and negotiation protocols is
crucial here (and has received a fair amount of
attention in the distributed AI literature). 

The presence of other agents can help a
planning agent discover decent individual
courses of action for itself. Planning is a com-
putationally intensive process. By observing
the behavior of other agents with similar (or
analogous) goals and abilities, a planning
agent can direct its search for a good plan in an
especially fruitful area of policy space. Imita-
tion offers yet another opportunity, especially
in learning situations, where the decision-
making agent might not be completely aware

with resources are drawn. Economic models
generally assume that agents enter a market
with prespecified valuations for specific goods
(or bundles of goods) and then act according
to those valuations; little attention is paid to
how those valuations arise. In this sense, DTP
plays a complementary role to economic mod-
els for resource allocation. For example, the
value of one set of goods relative to another
can be defined as the difference in expected
value obtained by acting optimally with the
first set of goods compared to the second. 

If that’s all that DTP had to offer to the use
of economic methods in multiagent systems,
the research challenges facing the integration
would not be difficult. Often overlooked, how-
ever, is the fact that an agent must plan not
only for its domain-level objectives but also for
its plan-suitable economic behavior. Specifical-
ly, an agent must make decisions about which
resources to bid for (or purchase), when to bid
for them, how much to pay, and so on. In eco-
nomic models, the planning is generally
restricted to behavior within a given market or
auction: what to bid for a good given a fixed
valuation, how to apportion one’s endowment
over multiple goods in simultaneous auctions,
things of this nature. However, little effort has
been directed toward planning at the higher
level or to ways of integrating reasoning and
planning about economic activities with
domain-level planning. It seems to me that
such an integration is crucial to both research
in DTP and research in economic mechanisms
applied to multiagent systems. 

Reasoning and planning with economic
models is clearly important to the enterprise of
DTP. If we want to extend the reach of intelli-
gent planning agents to more (and more
sophisticated) domains, we must enable them
to interact with other agents. There is little
doubt that much of this interaction will be
mediated by economic transactions of various
sorts—that’s simply the way much of the
world works. If we don’t provide our agents
with the ability to plan in such a world, we
severely restrict the types of activity in which
planning agents can engage. Planning an
activity as simple as traveling to a conference
requires economic planning and not just
domain-level planning.6 Work on planning to
bid in a sequence of auctions (Boutilier, Gold-
szmidt, and Sabata 1999; Hausch 1986) makes
a start in this direction; issues such as the order
in which to pursue resources, at what point to
pursue them, under what conditions, and so
on, are clearly critical. 

Conversely, research on the design of eco-
nomic protocols for multiagent interaction
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of system dynamics or action costs.
Multiagent reinforcement learning is a
related topic that deserves consider-
able exploration. 

It should be clear that the extension
of DTP techniques to the solution of
multiagent planning problems will
play an important role in broadening
the applicability, and increasing the
value of, multiagent systems. A num-
ber of general, interesting research
challenges emerge from this integra-
tion, and it offers the opportunity to
explore fertile territory at the cross-
roads of AI planning, economics,
game theory, distributed control, and
a host of other areas. 
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Notes
1. I am completing setting aside the consid-
erable research directed toward what I view
as mechanisms that support multiagent
interaction: social laws, communications
and negotiation strategies, agent modeling,
and so on. Work in these areas, however, is
often directed toward one or the other of
the categories that follow.

2. Allowing partial observability allows
even more general problems to be studied
(Myerson 1991).

3. I discuss the sequential aspects of this
problem a bit later.

4. Technically, an agent requires enough
memory to know which of its potentially
individually optimal actions it should
perform but not those of other agents.

5. Explicit reasoning about protocol states
can also allow generalization, whereby the
coordinated choices learned at one state
can be applied directly to similar states,
allowing agents to naturally fall into roles
(Boutilier 1999).

6. The recent experience of a colleague,
who wished to attend a workshop at a
resort, illustrates just this. His plan
involved finding accommodations before
booking a flight because the room was the
most scarce resource at this location. His
plan was “appropriate”: He was unable to
find accommodations for the entire work-
shop. By putting off the purchase of a plane
ticket, he was able to make the correct trav-
el plans.
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AAAI invites proposals for the 2001
Spring Symposium Series, to be held
March 26-28, 2001 at Stanford University,
California.

The Spring Symposium Series is an
annual set of meetings run in parallel at a
common site. It is designed to bring col-
leagues together in an intimate forum
while at the same time providing a signif-
icant gathering point for the AI communi-
ty. The two and a half day format of the
series allows participants to devote con-
siderably more time to feedback and dis-
cussion than typical one-day workshops.
It is an ideal venue for bringing together
new communities in emerging fields.

The symposia are intended to encour-
age presentation of speculative work and
work in progress, as well as completed
work. Ample time should be scheduled
for discussion. Novel programming,
including the use of target problems,
open-format panels, working groups, or
breakout sessions, is encouraged. Work-
ing notes will be prepared, and distrib-
uted to the participants. At the discretion
of the individual symposium chairs, these
working notes may also be made avail-
able as AAAI Technical Reports following
the meeting. Most participants of the
symposia will be selected on the basis of
statements of interest or abstracts sub-
mitted to the symposia chairs; some
open registration will be allowed. All sym-
posia are limited in size, and participants
will be expected to attend a single sym-
posium.

Proposals for symposia should be
between two and five pages in length,
and should contain:
■ A title for the symposium.
■ A description of the symposium, iden-

tifying specific areas of interest, and,
optionally, general symposium format.

■ The names and (physical and electron-
ic) addresses of the organizing commit-
tee preferably three or more people at
different sites, all of whom have
agreed to serve on the committee.

■ A list of potential participants that
have been contacted and that have
expressed interest in participating. A

common way of gathering potential
participants is to send email messages
to email lists related to the topic(s) of
the symposium. Note that potential
participants need not commit to partic-
ipating, only state that they are inter-
ested.

Ideally, the entire organizing committee
should collaborate in producing the pro-
posal. If possible, a draft proposal should
be sent out to a few of the potential par-
ticipants and their comments solicited.

Approximately eight symposia on a
broad range of topics within and around
AI will be selected for the 2001 Spring
Symposium Series. All proposals will be
reviewed by the AAAI Symposium Com-
mittee Chair (Chair: Ian Horswill, North-
western University; Cochair: Dan Clancy,
NASA Ames Research Center); and an
Associate Chair. The criteria for accep-
tance of proposals include:

Perceived interest to the AAAI com-
munity. Although AAAI encourages sym-
posia that cross disciplinary boundaries, a
symposium must be of interest to some
subcommunity of the AAAI membership.
Symposia that are of interest to a broad
range of AAAI members are also pre-
ferred.

Appropriate number of potential par-
ticipants. Although the series supports a
range of symposium sizes, the target size
is around 40-60 participants.

Lack of a long-term ongoing series of
activities on the topic. The Spring Sympo-
sium Series is intended to nurture emerg-
ing communities and topics, so topics
that already have yearly conferences or
workshops are inappropriate.

An appropriate organizing committee.
The organizing committee should have (1)
good technical knowledge of the topic,
(2) good organizational skills, and (3) con-
nections to the various communities from
which they intend to draw participants.
Committees for cross-disciplinary sym-
posia must adequately represent all the
disciplines to be covered by the sympo-
sium.

Accepted proposals will be distributed
as widely as possible over the subfields of

AI, and balanced between theoretical
and applied topics. Symposia bridging
theory and practice and those combining
AI and related fields are particularly
solicited.

Symposium proposals should be sub-
mitted as soon as possible, but no later
than April13, 2000. Proposals that are
submitted significantly before this dead-
line can be in draft form. Comments on
how to improve and complete the pro-
posal will be returned to the submitter in
time for revisions to be made before the
deadline. Notifications of acceptance or
rejection will be sent to submitters
around April 28, 2000. The submitters of
accepted proposals will become the chair
of the symposium, unless alternative
arrangements are made. The symposium
organizing committees will be responsi-
ble for:
■ Producing, in conjunction with the gen-

eral chair, a Call for Participation and
Registration Brochure for the sympo-
sium, which will be distributed to the
AAAI membership

■ Additional publicity of the symposium,
especially to potential audiences from
outside the AAAI community

■ Reviewing requests to participate in
the symposium and determining sym-
posium participants

■ Preparing working notes for the sym-
posium

■ Scheduling the activities of the sympo-
sium

■ Preparing a short review of the sympo-
sium, to be printed in AI Magazine.

AAAI will provide logistical support,
will take care of all local arrangements,
and will arrange for reproducing and dis-
tributing the working notes.

Please submit (preferably by electronic
mail) your symposium proposals, and
inquiries concerning symposia, to:

■ Ian Horswill
AAAI Symposium Chair
Computer Science Department
Northwestern University
ian@cs.nwu.edu
Tel: 847-467-1256 / Fax: 847-491-5258

The 2001 AAAI 
Spring Symposium Series 
Call for Proposals


