
■ This article presents an overview and survey of cur-
rent work in case-based reasoning (CBR) integra-
tions. There has been a recent upsurge in the inte-
gration of CBR with other reasoning modalities
and computing paradigms, especially rule-based
reasoning (RBR) and constraint-satisfaction prob-
lem (CSP) solving. CBR integrations with model-
based reasoning (MBR), genetic algorithms, and
information retrieval are also discussed. This arti-
cle characterizes the types of multimodal reason-
ing integrations where CBR can play a role, identi-
fies the types of roles that CBR components can
fulfill, and provides examples of integrated CBR
systems. Past progress, current trends, and issues
for future research are discussed.

Case-based reasoning (CBR) is an AI para-
digm that can be synergistically com-
bined with other approaches to facili-

tate a broad array of tasks (Aha and Daniels
1998). This article presents a brief introduction
to CBR, a review of other approaches with
which CBR has been combined, an overview of
tasks CBR integrations can perform, a discus-
sion of open issues in CBR integration, and a
look at synergies achieved through CBR inte-
gration. It characterizes the types of multi-
modal reasoning integrations where CBR can
play a role, identifies the types of roles that
CBR components can fulfill, and provides
examples of integrated CBR systems.

CBR is the process of using past cases to
interpret or solve new problem cases (Kolodner
1993; Riesbeck and Schank 1989). Excellent
extended introductions to CBR are available
(Aamodt and Plaza 1994; Kolodner and Leake
1996); therefore, this overview is brief. Central
to CBR is the determination of which past

cases are similar enough to the new case to
warrant consideration for reuse in the new
problem. There are two basic kinds of CBR: (1)
interpretive and (2) problem solving. Interpre-
tive CBR involves use of past cases, typically
called precedents, to create an analysis and jus-
tification for the interpretation of a new case.
Problem-solving CBR involves adapting a solu-
tion to a past problem, typically a design or
plan, to meet the requirements of the new sit-
uation. A lawyer arguing a case, for example,
would use interpretive CBR, but an engineer
configuring a motor would use problem-solv-
ing CBR. Problem-solving CBR can be further
subdivided into transformational and deriva-
tional CBR. In transformational CBR, past solu-
tions are used directly. In derivational CBR, the
problem-solving processes by which solutions
are derived are reused.

All CBR follows the same basic steps: (1) ana-
lyze the new case (or problem); (2) based on
this analysis, retrieve relevant past cases from
a case base; (3) based on a “similarity metric,”
rank retrieved cases according to how relevant
or useful they are with respect to the new case,
and select one or more “best” cases to use in
solving the new case; (4) create a solution to
the new case; (5) test and explore the proposed
solution; and (6) if appropriate, add the new
case and its solution to the case base and index
it so that it can be retrieved for future use.

Critical ingredients in CBR are means to
index and retrieve cases from the case base,
methods to assess similarity, methods to com-
pare and contrast cases, and methods to create
solutions. Solution methods in the two basic
types of CBR are quite different: In interpretive
CBR, the methods produce interpretations
with supporting rationales, and in problem-
solving CBR, new plans or designs are pro-

Articles

SPRING 2002 69

Case-Based Reasoning
Integrations

Cynthia Marling, Mohammed Sqalli, Edwina Rissland,
Hector Muñoz-Avila, and David Aha

Copyright © 2002, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2002 / $2.00

open issues in CBR integration follows. The
article closes with a summary and conclusions.

Case-Based–Reasoning
Integration Techniques

In this section, approaches and techniques for
integrating CBR with other reasoning modali-
ties and computing paradigms are presented.

Case-Based Reasoning and
Rule-Based Reasoning
RBR was the first modality to be successfully
integrated with CBR. RBR is the reasoning
approach behind classical expert systems,
including MYCIN, which diagnosed infectious
blood diseases; XCON, which configured VAX
computers for the Digital Equipment Corpora-
tion; and PROSPECTOR, which determined where
to search for mineral deposits (Hayes-Roth,
Waterman, and Lenat 1983). An RBR system
contains a rule base, or a set of if-then rules; an
inference engine, or a means of applying the
rules to solve problems; a working memory, or
a means of maintaining the current problem
state; and frequently, an explanation facility,
or a means of showing a user the sequence of
rules that led to a conclusion.

Each rule represents a small piece of knowl-
edge that can be combined, or chained togeth-
er, with other rules to infer conclusions or
derive solutions to problems. RBR differs fun-
damentally from CBR in both knowledge rep-
resentation and knowledge utilization. Some
important distinctions noted in Kolodner
(1993) are that cases represent larger chunks of
knowledge than rules, and they compose this
knowledge in advance of run-time inferencing;
rules represent patterns, but cases are con-
stants; and rules are applied when they match
a situation exactly, whereas cases can be used
in partially matching, or similar, situations.

Some rationales for integrating CBR with
RBR are that problem domains might naturally
contain both rules and cases; human reasoners
might naturally use both rules and cases; the
rules of a domain might be vague, or open tex-
tured, and therefore require interpretation;
rules can have exceptions that must be han-
dled; rules can enable evaluation of solutions
without supporting initial generation of solu-
tions; and cases can be few or difficult to
acquire in a domain.

The earliest CBR-RBR hybrids were built in
statutory legal domains. These domains natu-
rally include rules, or statutes, and cases, or
legal precedents. A famous hypothetical rule
from legal philosophy illustrates the problems
of statutory interpretation (Hart 1958). Con-

duced. Interpretive CBR relies heavily on
methods to reason analogically with similari-
ties and differences between cases. Good exam-
ples of interpretive CBR can be found in the
law. The HYPO system was one of the earliest
and best examples of an interpretive CBR sys-
tem (Ashley 1990; Rissland, Valcarce, and Ash-
ley 1984). HYPO modeled how lawyers argue
cases involving trade secrets law by presenting
points and counterpoints based on cases previ-
ously settled in courts of law. Problem-solving
CBR relies on methods to adapt cases and
assess how modifications impact the overall
solution (for example, does satisfying a new
goal undo satisfaction of an old one). One of
the earliest and best examples of problem-solv-
ing CBR was CHEF (Hammond 1989, 1986). CHEF

was a planner, which created new plans
through adaptation of old ones. A plan in CHEF

was a recipe for preparing a complex dish.
Note that a system that only analyzes and

retrieves cases is not a complete CBR system.
However, in many hybrid systems, it is exactly
the early steps of CBR—analysis, retrieval,
ranking, selection—that are often used in con-
junction with another reasoning method. Oth-
er, more complex, hybrid systems use full-scale
CBR. One might distinguish between these sys-
tems with the use of a small or a big “r”; that
is, CBr or CBR. In this article, the primary focus
is on CBr (small r) hybrids.

Although CBR is a powerful paradigm in its
own right, there are strong motivations for
integrating it with other reasoning modalities
and computing techniques, including rule-
based reasoning (RBR), constraint-satisfaction
problem (CSP) solving, model-based reasoning
(MBR), genetic algorithms, and information
retrieval. Researchers have reported that inte-
grated approaches have enabled them to more
accurately model the knowledge available in a
problem domain, compensate for the lack of a
predictive or complete model of a problem
domain, simplify the knowledge-acquisition
process, improve solution quality, improve
run-time efficiency, leverage past problem-
solving experiences, and compensate for the
shortcomings of one approach by capitalizing
on the strengths of another (Aha and Daniels
1998; Rissland and Skalak 1991).

In summary, there are many reasons for inte-
grating CBR with other reasoning modalities
and many ways to do so. In the next section,
different approaches to CBR integration are
presented. Then, tasks that have benefited
from CBR integration are described, including
interpretation and argumentation, design and
synthesis, planning, and the management of
long-term medical conditions. A discussion of

Articles

70 AI MAGAZINE

sider the rule “No vehicles in the park.” Part of
the problem in administering this rule is deter-
mining what counts as a vehicle. Clearly, a car
or a bus is a vehicle, but is a motorized bike a
vehicle? A motorized wheelchair? A nonmotor-
ized wheelchair? Further, how ironclad is this
rule: Does it really mean never, or are there
some situations when a vehicle is allowed? For
example, how should the rule be applied to fire
trucks, ambulances, or park maintenance
trucks? Does the rule really mean “No vehicles,
except for emergency vehicles or park mainte-
nance vehicles, are allowed in the park”?
Should the rule always permit such vehicles
access? What about a park maintenance truck
that only drives in the park so its crew can have
a picnic lunch? No matter how carefully craft-
ed such rules are, there will always be interpre-
tive questions about their meaning and scope
and their constituent terms. The law deals with
these problems by using cases in conjunction
with rules. Cases can stand for implicit updates
to the rules, for example, by registering unspo-
ken exceptions (emergency vehicles) and
requirements (on official business). Cases allow
a rule-based regime to adapt to its changing
environment without necessarily requiring the
rules to be rewritten at every new turn of
events.

Good examples of hybrid CBR-RBR legal sys-
tems are CABARET (Rissland and Skalak 1991),
GREBE (Branting 1991), and IKBALS (Zeleznikow,
Vossos, and Hunter 1994). The CABARET system
operates in the area of U.S. tax law concerning
the home-office deduction. It integrates CBR
and RBR—tax cases and tax regulations—by
using a rule-based agenda mechanism. Based
on the status of tasks in progress by CBR and
RBR modules, heuristic rules are used to post
and prioritize tasks on an agenda of tasks. This
seminal system is described in more detail lat-
er. GREBE operates in the area of Texas employ-
ment law concerning worker disability for
injuries sustained during the course of employ-
ment. It uses CBR and RBR to determine and
justify the legal conclusions of its cases. Unlike
CABARET, it does not use an agenda to mediate
between strategies. Rather, it always tries both
strategies to find the best justification for a
conclusion. IKBALS works in two Australian legal
domains: (1) worker disability and (2) lending
by financial institutions. RBR is its dominant
reasoning mode. CBr is used to retrieve appro-
priate cases for review by lawyers when rules
proved inadequate to derive a solution. IKBALS

also integrates information retrieval, giving
users access to sources such as legal treatises in
addition to statutes and cases.

Another early system that capitalized on

CBR-RBR synergy is ANAPRON (Golding and
Rosenbloom 1991). ANAPRON is a speech synthe-
sizer that pronounces American surnames
aloud. Because American surnames originate in
many different languages and become Ameri-
canized in many different ways, ANAPRON’s task
is complex. ANAPRON uses a CBR module to
improve the accuracy of an essentially RBR sys-
tem. It uses rules to generate a probable pro-
nunciation for a name and then uses cases to
handle exceptions to the rules. Although this
example is not from Golding and Rosenbloom
(1991), one might think of the exception made
for the popular British television character
Hyacinth Bucket, who insists that her surname
be pronounced bouquet. Numerous exceptions
arise as people try to stand out or fit in or defer
to whatever their neighbors happen to call
them. Such cases might be viewed as extremely
specific rules. For example, if you happen to
meet Hyacinth Bucket, then remember to
address her as Mrs. Bouquet. Golding and
Rosenbloom reported that rules and cases had
complementary strengths in ANAPRON. Rules
were good for capturing large trends, and cases
were good for compensating in situations not
covered by the trends. Without CBR, ANAPRON’s
accuracy might have been improved through
continued refinement of the rule set. However,
with over 600 rules in the system, a point of
diminishing returns had been reached. It was
easier to integrate cases than to formalize more
rules.

CBR and RBR have also been combined to
perform the task of harmonizing melodies
(Sabater, Arcos, and López de Mántaras 1998).
This task has traditionally been approached in
a rule-based manner because there are well-
established harmonization rules that reflect
common musical practice. However, these
rules are not constructive in nature. As Sabater
et al. explain, “... the rules don’t make the
music; it is the music which makes the rules”
(p. 147). It is easier for people to appreciate
good harmonization or detect bad harmoniza-
tion than it is for them to generate good har-
monization in the first place. GYMEL integrates
cases, which are musical phrases from Catalan
folk songs, with general harmonization rules.
It inputs a musical phrase and outputs the
same musical phrase with a set of accompany-
ing chord sequences. CBR is the dominant
mode of reasoning, and RBR is applied when
CBR can not provide a solution. Although
expanding GYMEL’s case base might allow CBR
to provide more solutions, Sabater et al. did
not find it easy to formalize a large number of
musical phrases as cases. They believe that
their approach is applicable to other domains

Articles

SPRING 2002 71

the constraints of the system to be modeled. In
addition, it can be applied to many different
domains because of its simple but rich repre-
sentation. Constraint-satisfaction problems
(CSPs) involve finding values for variables sub-
ject to restrictions on which combinations of
values are acceptable.

The advantage of CSP is that it is a reasoning
mode that provides both modeling and solving
of a problem within the same framework. CSP
provides a simple and convenient way of rep-
resenting problems because it is a natural and
declarative approach to modeling. CSP is also
domain independent because it can hide many
domain-specific issues and be used at a more
abstract level. When a problem is represented
as a CSP, it can be solved independently of the
initial context or domain of application. The
CSP methods are applied to the CSP represen-
tation of the problem, which hides the context
used. CSP provides many advanced algorithms
to deal with hard problems (Kumar 1992).
Constraint reasoning takes advantage of many
mathematical methods and algorithms that
were improved to deal with CSPs.

CSP uses a representation called a constraint
graph in which the vertexes are variables of the
problem, and the edges are constraints
between variables. Each variable has labels,
which are the potential values it can be
assigned. CSPs are solved using search and
inference methods.

The map-coloring problem illustrates how
CSP operates. This problem can be stated as fol-
lows: “Given a map with N regions bordering
each other and M colors that can be used to
color each region, determine whether there is
an assignment of one color to each region such
that no two bordering regions have the same
color.” Figure 1 shows a map-coloring problem.

This problem can be represented as a graph-
coloring problem where the nodes represent
the different regions, the labels for each node
are the different colors a region can have, and
the existence of an edge between two nodes
indicates that the two corresponding regions
cannot have the same color (that is, there is a
constraint of “not equal” between these two
nodes). Figure 2 shows the graph-coloring
problem that corresponds to the map-coloring
problem in figure 1.

The graph-coloring problem can be formu-
lated as a CSP. The variables of this problem
represent the regions (X, Y, and Z), the values
are the different colors (red, blue and green),
and the constraint is that no bordering regions
have the same color (that is, no two variables
connected by a “not equal” edge can be
assigned the same value).

where there are an insufficient number of cases
and an inadequate rule base for single strategy
problem solving.

Case-Based Reasoning and Constraint-
Satisfaction Problem Solving
Constraint satisfaction is a powerful and exten-
sively used AI paradigm (Freuder and Mack-
worth 1992). It is a natural way of representing
problems because the user needs only to state

Articles

72 AI MAGAZINE

X

ZY

Figure 1. Map-Coloring Problem.

Y

red

blue
green

red

blue
green

red

blue
green

X

Z

Figure 2. Constraint Graph.

The constraint graph of a CSP is the graphic
representation of the problem. In this example,
the constraint graph of the map-coloring prob-
lem is the same as the corresponding graph-
coloring problem. The nodes are the variables,
the labels are the values, and the edges are the
constraints.

The CSP has a solution if there is an assign-
ment of values to variables such that all the
constraints are satisfied. A solution in CSP can
mean different things depending on the con-
text and the goal to be achieved. The goal can
be to determine whether there is a solution,
determine how many solutions there are, find
any solution, find an optimal solution, or find
a solution with specific characteristics. Figure 3
shows one solution of the map-coloring prob-
lem in figure 1.

Many other toy problems such as the N-
queens problem can also be represented and
solved using CSP, and these problems have
helped in developing methods and tools that
are used in real-world applications. Many real-
world applications have used CSP for problem
representation and modeling as well as for
problem solving (Puget and Leconte 1995;
Wallace 1996). These applications include
design and configuration, diagnosis, debug-
ging, verification, graphics, decision support,
scheduling, planning, and resource allocation.

Figure 4 shows how CSP is used to represent
and solve problems. With the CSP representa-
tion of a problem, different methods can be
used to solve it independently of the context of
the application. The two main solving tech-
niques are search and inference. There are
many algorithms that use search exclusively,
such as backtracking. Backtracking search can
require exploration of the entire tree of possi-
bilities to find a solution. Other algorithms
make use of an inference method such as arc
consistency. Research and experience have
shown that the most successful techniques for
solving CSPs are the ones that combine search
and inference. The questions, then, are how
and when to combine them to get the best
results. The answers to these questions depend
on the domain of application and the available
resources.

The earliest systems to integrate CBR and CSP
were CADSYN (Maher and Zhang 1991) and JULIA

(Hinrichs 1992). CADSYN generates structural
designs for buildings. It uses design constraints
for case adaptation. CADSYN transforms previous
building designs to fit new requirements after
conflicts are detected. JULIA designs meal plans
for groups of diners. It uses a constraint propa-
gator to identify and resolve constraint viola-
tions that arise during meal planning.

The two main approaches to integrating CSP
and CBR have been to (1) use CBR to initialize
the CSP system and (2) use CSP in the adapta-
tion step of CBR. In the first approach, a similar
past case retrieved by CBR is used to position
the CSP process at a point in its problem space
from which to begin its search for a solution;
the search travels outwards by means of CSP-
based adaptations of the initial case (Sqalli,
Purvis, and Freuder 1999). This usage is an
example of CBr because only the retrieval
phase of CBR is used. In the second approach,
CSP provides CBR with a specific method for
accomplishing adaptation; thus, CSP is a
process used internally within CBR. The use of
CSP to accomplish adaptation is relatively new.

Weigel’s research prototype (Weigel and Falt-
ings 1998) and the COMPOSER (Purvis and Pu
1996), CADRE (Faltings 1996; Hua and Faltings
1993), IDIOM (Smith, Lottaz, and Faltings 1995)
and CHARADE (Avesani, Perini, and Ricci 1993)
projects exemplify the two integration
approaches. The rationale for Weigel’s system
was that in configuration problems, the user
might have incomplete knowledge of the
domain; so, CBR can be used to provide an ini-
tial solution to help the user specify the prob-
lem. Even though a configuration domain can
allow for the development of a complete con-
straint model, customers might not fully be
able to describe the products they want
because of their incomplete knowledge of the
products or the complexity of the domain.
Weigel’s system proposes an initial solution
that is close to a customer’s desired product
and then modifies it to meet the remaining
requirements. Here, case adaptation is consid-
ered to be the process of replacing values in a
solution (case) with interchangeable values. It
is easier to adapt a nearly satisfactory, or close-
by, solution than to construct a complete solu-
tion from scratch. Finally, CSP, in turn, helps in
creating the case base of initial solutions. Using
CSP to create new cases, as well as using CBR to

Articles

SPRING 2002 73

X
Y

greenZ

red

blue

Figure 3. Constraint-Satisfaction Problem Solution.

can be architectural or structural and are used to
reduce the adaptation space. CADRE formulates
cases as instances of particular buildings, and
the constraints restrict the possible modifica-
tions that can be made to these cases. There are
two forms of adaptation: (1) dimensional adapta-
tion, where only dimensions of the case are
changed, and (2) topological adaptation, where
the arrangement and number of spaces and
walls are also modified. Constraints expressing
the admissible modifications are first solved to
obtain a constraint system that is as simple as
possible. The complexity of adaptation is then
manageable so that it can be carried out by the
user in an interactive manner. CADRE has been
tested on examples of realistic complexity.

IDIOM is a system for composing apartment
layout designs using cases (Smith, Lottaz, and
Faltings 1995). The goal of the IDIOM project was
to make the solution space easier to explore by
designers. It supports designers by reducing
constraint complexity and managing design
preferences, thereby restraining proposed solu-
tions and further adaptation within feasible
design spaces. There are three sources of con-
straints in IDIOM: (1) the library of cases, in
which cases are represented as CSPs; (2) the
interpretation of the design by the user; and (3)
the domain models. When a case is introduced
into a design, all its associated constraints are
added to the current set of constraints. The user
can then add further constraints to interpret
the case in its new environment. A solution is
then calculated for the layout. Case combina-
tion is supported through incrementally solv-
ing relevant constraints. Constraints are
restricted to linear and simple nonlinear rela-
tionships so that they can be solved rapidly.

help CSP get started, makes Weigel’s integra-
tion of CSP and CBR highly synergistic.

COMPOSER solves assembly sequence and con-
figuration design problems using a CSP engine
as the adaptation mechanism (Purvis and Pu
1996). In the COMPOSER system, the motivation
was to achieve domain independence in case
adaptation through CBR-CSP integration.
Here, the CBR adaptation process is accom-
plished using CSP. Each case is formulated as a
CSP, and a CSP repair algorithm is used to per-
form adaptation, resulting in a domain-inde-
pendent adaptation mechanism. Representing
cases as CSPs also allows case combination to
occur naturally. When the case-based reasoner
is presented with a new problem, similar cases
are retrieved, and a CSP repair algorithm (the
minimum conflicts algorithm) is used to
achieve adaptation. COMPOSER finds the corre-
spondence between an old case and the new
one using structure mapping and nearest-
neighbor similarity metrics. The minimum-
conflicts algorithm is the means by which COM-
POSER combines all the solutions to the
matched cases into a consistent solution for
the new problem. Because case representation
and case adaptation both use CSP, the COMPOSER

system is one of the most thoroughly integrat-
ed uses of CBR and CSP. A strong synergy
results because CBR increases the efficiency of
CSP, and CSP helps to formalize the adaptation
process for CBR (Purvis 1998).

CADRE (Faltings 1996; Hua and Faltings 1993)
is used in the domain of floor-plan design. It
works together with designers and uses case-
based spatial reasoning for the design of build-
ings. Constraints in CADRE represent numeric
relationships among dimension variables. They

Articles

74 AI MAGAZINE

CSP Representation

Problem
Statement Solution

Constraints

Values

Variables

Algorithm
CSP

Figure 4. Constraint-Satisfaction Problem for Problem Representation and Problem Solving.

The CHARADE Project combines CBR and CSP
for situation assessment and planning in forest
fire fighting (Avesani, Perini, and Ricci 1993). It
aids decision making in environmental emer-
gencies by also incorporating human assess-
ment and reasoning. CSP is used to represent
cases in CHARADE. Constraint propagation tech-
niques are applied to part of the plan represen-
tation to support adaptation and repair of a
sector plan. Thus, CSP supports case adapta-
tion in CHARADE. CBR supports the goal of pro-
viding a quick assessment of an emergency sit-
uation, and the constraint-solving process
enables the system to determine the best
exploitation of available resources to handle
the emergency.

There have also been other approaches to
CBR-CSP integration. ADIOP, a system for diag-
nosing interoperability problems in asynchro-
nous transfer mode (ATM) networks, uses CBR
to compensate for incompleteness in the CSP
model and to correct and update the CSP mod-
el (Sqalli and Freuder 1998). Here, a diagnostic
problem is first modeled as a CSP, and then
CBR is used to compensate for what is missing
in this CSP model. The CSP model is incom-
plete or incorrect if it is not completely or cor-
rectly modeling an interoperability test. ADIOP

can determine incompleteness or incorrectness
by considering similar cases and interacting
with the user. When a model is incomplete or
incorrect, ADIOP uses CBR to check if similar
cases of model incompleteness or incorrectness
occurred in the past and to adapt them to the
new situation. Thus, the user is allowed to
complete or correct the model by updating it
using the new adapted test case. CBR is also
used to update the CSP model to make it more
robust in solving future problems. Cases pro-
vide information for updating the CSP model
that might change some of its components, for
example, by adding new constraints. An ad-
vantage of CSP in this application is that it
reduces the number of cases that would be
required by a purely CBR system.

One advantage of CBR-CSP integration is
that CSP-based approaches to adaptation offer
sophisticated ways to deal with the long-stand-
ing problem of case adaptation. Over the years,
many researchers have considered adaptation
to be the most difficult part of CBR. Some even
feel that it ought to be avoided altogether
because of its complexity (Barletta 1994). View-
ing adaptation as a CSP occurred very early in
the evolution of CBR. For example, in the early
1980s, Rissland’s CEG (CONSTRAINED EXAMPLE GEN-
ERATION) system generated mathematical exam-
ples and counterexamples (“ceg’s”) that satis-
fied posted desiderata or constraints (Rissland

1980; Rissland and Soloway 1980). CEG did this
by first retrieving past examples that already
satisfied many of the constraints and then
attempting to modify these examples to satisfy
the rest of the constraints. Although this
retrieval-plus-modification approach worked
well enough when there was little constraint
interaction, the approach was far too simplistic
for many problems. CSP is exactly the sort of
mechanism needed to handle these problems.
This system from 20 years ago is not only one
of the forerunners of CBR but a forerunner of
the mixed-paradigm CBr approach of using
case retrieval to position further problem solv-
ing, such as with CSP.

There are drawbacks and trade-offs, as well
as advantages, in CBR-CSP integration. First,
there is overhead involved in accommodating
both modes in one system, and many addi-
tional system components can be required.
Second, each reasoning mode has time and
space limitations. CBR might need more space
for storing cases and more time to perform
retrieval and matching. CSP might add more
complexity because of the NP-completeness of
constraint solving. Third, it might not be
appropriate to update CSP models in all prob-
lem domains. However, when a balanced inte-
gration can be achieved, CBR and CSP comple-
ment each other as follows: CSP provides a
domain-independent representation of a task;
CBR can be used in incomplete domains,
where CSP models are difficult or impossible to
obtain; CSP provides a knowledge representa-
tion that supports problem formulation; CBR
provides a useful learning capability; CSP pro-
vides many advanced algorithms to deal with
hard problems; and CBR provides CSP with a
starting point for using these algorithms. A
synopsis of the basic CBR steps that have been
accomplished using CSP is given in table 1.

Other Techniques
Model-based reasoning: Model-based reason-
ing (MBR) is an approach in which general
knowledge is represented by formalizing the
mathematical or physical relationships present
in a problem domain. It is perhaps unfortu-
nately named in that CSP relies on formal
models, and RBR can be used to model prob-
lem domains in which the models are more
heuristic or rulelike. MBR models typically cap-
ture causal relationships to diagnose problems
or predict situation outcomes.

The first system to combine CBR with MBR
was CASEY, which diagnosed heart failures
(Koton 1988). CASEY was a primarily CBR sys-
tem that interfaced with a previously existing
MBR heart failure program. It used knowledge

Articles

SPRING 2002 75

coloring plastics, and SOPHIST (Aarts and Rousu
1997), which plans bioprocess recipes, such as
those for brewing beer.

Genetic algorithms: Genetic algorithms are
techniques patterned after the evolutionary
process of natural selection. They learn good
problem solutions by beginning with arbitrary
solutions and creating future generations of
better solutions by mutating and propagating
the strongest solutions from preceding genera-
tions. Maher (1998) has combined genetic
algorithms with CBR in an architectural design
domain. In architectural design, it is not suffi-
cient to recall a past blueprint that would meet
current needs. Rather, some new synthesis that
draws on past designs must be achieved. To
date, methods that have attempted to address
this issue have been time consuming and
knowledge intensive. Genetic algorithms pro-
vide an efficient means of combining pieces of
past designs. Genetic algorithms are used to
combine pieces of past building designs into
new composite designs. Design cases are repre-
sented as genes, which are manipulated using
the traditional genetic algorithm techniques of
crossover and mutation. Many building de-
signs are quickly generated and tested, allow-
ing satisfactory designs to be identified and
maintained.

Information retrieval: Information re-
trieval applies primarily statistical techniques
to the problem of locating appropriate text
documents in large, unstructured collections,
such as newspaper archives, legal libraries, and

representing a physiological model of the heart
to match new cases to old ones and derive new
diagnoses from old ones. When CASEY could
not find a close enough match in its case base,
it invoked the original MBR system to solve the
problem. Although the MBR system was accu-
rate and reliable, CBR enabled CASEY to improve
system efficiency.

A more recent CBR-MBR hybrid is CARMA, an
advisory system that helps ranchers manage
grasshopper infestations (Branting 1998). CAR-
MA predicts forage loss and provides a cost-ben-
efit analysis for the treatment options in a giv-
en situation. It incorporates numeric models
developed by entomologists as well as specific
cases of past infestations. In this domain, the
available numeric models are not complete
enough to accurately predict the effects of
alternate treatment options. Further, there are
not enough documented cases for CBR alone
to provide adequate assistance to ranchers. In
CARMA, CBR is used to select a similar case, and
the model assists in adapting that case’s predic-
tion by simulating the effects of different treat-
ment options. The CBR-MBR integration
improves solution accuracy over that which is
possible using either single approach. The
approach used in CARMA, called approximate–
model-based adaptation, enables prediction and
control planning in other domains where indi-
vidual knowledge sources are insufficient for
these tasks. Two other systems that have used
this approach are FORMTOOL (Cheatham and
Graf 1997), which plans colorant formulas for

Articles

76 AI MAGAZINE

Table 1. Case-Based Reasoning Steps Supported by Constraint-Satisfaction Problem Solving.

System Case Representation Case Adaptation Case Acquisition

Weigel’s No Yes Yes

COMPOSER Yes Yes No

CADRE Yes Yes No

IDIOM Yes Yes No

CHARADE Yes Yes No

ADIOP Yes No No

the World Wide Web. Typically, users indicate
the type of document they deem appropriate
by entering structured queries containing key-
words. An information-retrieval system strives
to achieve perfect recall, or retrieval of all rele-
vant documents, and perfect precision, or
retrieval of only relevant documents. The
degree of recall and precision actually achieved
can depend on the user’s skill in formulating
queries.

SPIRE, a CBR–information-retrieval integra-
tion, allows users to retrieve documents from a
large legal corpus without having to specify
formal queries (Daniels and Rissland 1997;
Rissland and Daniels 1996). It uses cases of
legal documents and passages to generate
queries, which are then run by a full-text
retrieval engine. SPIRE first analyzes a new prob-
lem with respect to its own case base in the
way standard for legal CBR systems. It then
uses the results of this analysis to drive the
INQUERY information-retrieval system, which
through its relevancy feedback module
retrieves documents in its standard way. The
CBR module of SPIRE analyzes the problem and
selects the most relevant cases that it has in its
case base. It hands the texts of these cases to
INQUERY, which automatically generates a stan-
dard query composed of terms or pairs of
terms. Thus, SPIRE bridges the gap between the
purely symbolic CBR engine and the purely
text-based retrieval engine. This enabled SPIRE

to achieve excellent results, particularly when
large numbers of terms (100 or more) were
used. For example, in one experiment, SPIRE was
tested on a problem case based on an actual tax
case (the Weissman case) (Rissland and Daniels
1996) where its CBR module retrieved cases
causing its information-retrieval module to
generate a query of 150 terms. SPIRE returned
several important home-office deduction cases,
including two that were factually right on
point in that they involved professors taking
home-office deductions, just as in the problem
case. Perhaps more importantly, SPIRE found the
most important case (Soliman) on the topic in
all its three versions: (1) a 1990 lower Tax
Court case; (2) a 1991 case in the Court of
Appeals; and (3) a 1993 Supreme Court case,
which still is the definitive case on this topic.
None of these cases were known to SPIRE, and
all the Soliman cases were decided after SPIRE’s
case base was created. Thus, not only was SPIRE

able to find highly relevant documents, it was
also able to cope successfully with the “stale-
ness” problem by accessing documents created
long after its own case base.

SPIRE uses a similar approach in retrieving
specific passages from within a large docu-

ment. In this “inner loop,” SPIRE uses past
examples of text discussing an issue (for exam-
ple, the honesty of a debtor applying for bank-
ruptcy relief) to generate a query to run on the
document to locate passages where the issue is
discussed. SPIRE allows ordinary users to run
queries at an expert level, minimizing the time
they spend reviewing retrieved documents that
they do not deem to be appropriate or relevant.
SPIRE is an example of CBr in that CBR is used
(twice!) to aid information retrieval, first to
find relevant documents and then within each
document to find relevant passages.

The STAMPING ADVISER system is another
CBR–information-retrieval integration, which
aids feasibility engineers in evaluating designs
for stamped metal automotive parts at Ford
(Leake et al. 1999). Here, CBR and information
retrieval are integrated into the engineer’s
overall work flow to support the entire design
process. Stamped parts make up the bodies of
automobiles and, as such, are designed to meet
aesthetic, structural, functional, cost, and man-
ufacturability criteria. They are initially de-
signed using a computer-aided design (CAD)
tool, and then they are critiqued in a feasibility
analysis to identify any potential problems
before the design is finalized. Past cases of
stamped parts, along with problems encoun-
tered in their design and solutions to those
problems, are used in the STAMPING ADVISER.
These past cases are integrated with other avail-
able knowledge sources, such as company
guidelines, to ensure consistent styling at a rea-
sonable cost. The STAMPING ADVISER uses just-in-
time retrieval; that is, it presents information
when it is needed rather than require the user
to make explicit queries. Based on the task the
feasibility engineer is engaged in, the system
automatically generates queries to retrieve and
present relevant style guidelines. Thus, CBR
and information retrieval are integrated into
the larger task context, providing the feasibili-
ty engineer with a tool that is natural to use.

Case-based reasoning: Researchers have
also suggested integrating multiple CBR com-
ponents within a single system. This approach
is useful when a problem domain requires two
different styles of CBR, such as transformation-
al and derivational CBR, or two different levels
of reasoning, such as domain-specific reason-
ing and metareasoning. A system that exempli-
fies this approach is DIAL, which operates in the
domain of disaster response planning (Leake
and Kinley 1998). It generates high-level plans
for reacting to disasters, such as floods and
earthquakes. DIAL might be considered a CBR-
RBR hybrid in that RBR is used to support sim-
ilarity assessment and case adaptation. Howev-

Articles

SPRING 2002 77

equal footing. Its domain-independent archi-
tecture has the following major components:
(1) there are two independent co-reasoners,
one case based and one rule based; (2) each rea-
soner has a dedicated monitor that makes
observations on its processing, results, and par-
tial results and recasts these observations in a
language understandable by the controller;
and (3) an agenda-based controller uses the
observations of the monitors to propose and
select tasks to be acted on by the individual co-
reasoners.

CABARET’s system architecture allows it to
combine CBR and RBR in a highly opportunis-
tic way. The system architecture, first described
in Rissland and Skalak (1991), is shown in fig-
ure 5. CABARET works as follows: One of the co-
reasoners works on a task; the monitor mod-
ules make observations; and based on the
observations, the controller posts new tasks
and selects the next one to be worked on. On
conclusion, CABARET outputs a memo generated
by filling in a stylized template.

CABARET uses four distinct sources of knowl-
edge: (1) CBR knowledge, including a case
base, indexes, and similarity metrics; (2) RBR
knowledge, including rules and predicates; (3)
control knowledge, or domain-independent
control rules to propose and rank tasks based
on observations made by the monitors; and (4)
general domain knowledge, especially hierar-
chies available to all modules.

CABARET’s control rules guide its problem
solving and embody its theory of statutory
interpretation. Examples are (1) if one mode of
reasoning fails, then switch to the other; (2)
once a conclusion is reached, switch the form
of reasoning to check if it holds in the other
mode; (3) if all but one antecedent of a rule can
be established, then use CBR to show the
missed antecedent can be established using
cases; and (4) if all but one antecedent of a rule
can be established, then use CBR to show the
missed antecedent is not necessary. The last
two examples are “near-miss” heuristics. Not
only are they particularly useful in rule inter-
pretation and argument in legal reasoning
(Skalak and Rissland 1992), they could also be
used in any mixed case-and-rule domain in
which the rules are not logically ironclad.

Note that interpretive CBR is not confined to
profound problems of law and philosophy. It is
ubiquitous in everyday life. For example, most
parents eventually face an instance of deciding
whether or not to give their high school–aged
son or daughter the keys to the family car to
drive to an event (a rock concert, the senior
prom) many miles away from home and likely
to involve late night driving. Most children

er, its strength lies in integrating different CBR
components to monitor, capture, and replay its
reasoning processes. DIAL’s controlling process
is a transformational CBR module that gener-
ates new disaster response plans by remember-
ing and adapting old ones. It is supported by
derivational CBR modules that assist with sim-
ilarity assessment, case retrieval, and case adap-
tation.

Tasks Benefiting from Case-
Based–Reasoning Integration

Among tasks that have benefited from CBR
integration are interpretation and argumenta-
tion, design and synthesis, planning, and the
management of long-term medical conditions.

Interpretation and Argumentation
Interpretive CBR is frequently used in disci-
plines such as ethics, public policy, and law,
where new fact situations are interpreted in
light of past ones. In these disciplines, con-
cepts are often open textured in that they can-
not be defined by universally valid necessary
and sufficient conditions but, rather, have a
penumbra of borderline cases whose interpre-
tation is arguable (that is, they could reason-
ably be classified either way, as positive or neg-
ative instances of the concept), and experts
often disagree and argue about their interpreta-
tion. Appellate law typically deals with diffi-
cult, penumbral cases. In fact, CBR is the pri-
mary mode of reasoning underlying
Anglo-American law. Such precedent-based
legal systems are based on the doctrine of stare
decisis that mandates that similar cases should
be decided similarly.

Statutory legal domains abound in interpre-
tive CBR and RBR. A good example of such a
domain is tax law, which is based on statutory
rules and regulations but whose rules are not
ironclad and whose ingredient terms—even
the term income—are not well defined. Despite
these shortcomings, they must nevertheless be
applied to myriad situations. To inform their
application, all involved—taxpayers, Internal
Revenue Service administrators, accountants,
lawyers, tax courts—use cases. For example,
the so-called home-office deduction rule
requires that a taxpayer use his/her home
office on a “regular basis” (Section 280A(c)(1)
of the tax code), but nowhere is there a defini-
tion of what constitutes such usage. The best
guide is to look at how this term has been
interpreted in past cases. The CABARET system
(Rissland and Skalak 1991), one of the first
CBR-RBR hybrids, operates in this domain.

CABARET’s control regime gives CBR and RBR

Among tasks
that have

benefited from
CBR

integration are
interpretation
and argumen-
tation, design
and synthesis,
planning, and

the manage-
ment of long-
term medical

conditions.

Articles

78 AI MAGAZINE

face a situation of making the “case” for such
permission. Parents and child might argue
their positions by considering how such
requests were handled in past cases, for exam-
ple, those involving older siblings, classmates,
and neighbors. They would no doubt delve
into such issues as driving experience, past
behavior in situations requiring responsible
action, the perceived hazards of the trip, likely

weather and road conditions, and the commu-
nity standards of the child’s and the parents’
peer groups.

The end result of this type of CBR is not only
an interpretation of the new case but also a
rationale justifying it. A mere yes or no would
not suffice in the previous example (especially
if the “petitioner” loses). Case-based jus-
tification involves comparing and contrasting

Articles

SPRING 2002 79

Control Heuristics

Agenda

Goals Satisfied

Derived Facts

Relevant Cases

RBR Monitor CBR Monitor

Rule-Based

Rules

Case-Based
ReasonerReasoner

Cases

Indices

Metrics

...

...

...

...

...

...

Argument

Explanation

Supporting Cases, Rules, Facts

User Input

Controller

System Output—Analysis of Case

Top Level Purpose (argument, explanation)

Facts of Current Case

Point of View (pro, con)

Figure 5. CABARET’s Architecture.

must constrain intake of calories, fat, sodium,
calcium, protein, cholesterol, or other nutri-
ents. In designing menus manually, nutrition-
ists naturally use both CBR and RBR. CAMPER

was built by combining the best features of
independent CBR and RBR nutritional menu-
planning systems. The CBR component stores,
retrieves, and adapts daily menus, and the RBR
component relies on a process of generate,
test, and repair, using menu patterns, an
ontology of foods, and common-sense knowl-
edge of the ways in which foods can be com-
bined. CBR and RBR complement each other
in CAMPER. CBR contributes an initial menu
that meets design constraints by capitalizing
on food combinations that have proven satis-
factory in the past. RBR allows analysis of
alternatives, so that innovation beyond the
tried and true becomes possible. After an ini-
tial menu is proposed through CBR, the user
interacts with an RBR what-if analysis module
to explore creative alternatives. The user can
modify the menu, guided by rules, and then
save significantly altered menus in the case
base for future use.

Another CBR-RBR hybrid, SAXEX, integrates
background musical knowledge into a primar-
ily CBR system for generating expressive musi-
cal performances (Arcos, Lopez de Mantaras,
and Serra 1998). This application is of practical
use in music performance and synthesis
because musical scores contain information
about the pitch and duration of each note, but
they do not help with the expressive parame-
ters of rubato, vibrato, articulation, and attack.
These parameters are ordinarily inferred and
incorporated into a performance by a human
performer. SAXEX operates in the context of
tenor saxophone interpretation of standard
jazz ballads. SAXEX infers a set of expressive
transformations to apply to an inexpressive
musical input phrase and then outputs an
expressive performance of the same phrase.
Spectral modeling and synthesis techniques
are used to extract high-level parameters from
expressive musical performances. The expres-
sive performances are stored in SAXEX’s case
base. A case in SAXEX consists of a musical score
plus the extracted parameters that allow it to
be played expressively. Background musical
knowledge is used for identifying cases that are
similar to an input problem and transforming
a new inexpressive piece based on features of a
stored expressive piece. Experiments run on
SAXEX showed results comparable to human
performance. Researchers plan to extend SAXEX

to make it a practical tool for musicians.

the new case with relevant precedents; creating
analogies between the new case and the sup-
porting precedents; and breaking analogies
with, or “distinguishing away,” contrary cases.

Design and Synthesis
Design is the process of fully describing a new
artifact that will, when produced, satisfy a giv-
en set of requirements. In case-based design,
past designs or design experiences are used in
the creation of new designs. The task of design
is one in which integrating other approaches
with CBR has proven fruitful.

FABEL is a CBR-MBR-RBR system for architec-
tural design (Gebhardt et al. 1997). A building
in FABEL contains tens of thousands of design
objects. It comprises several cases, each con-
taining from two to a few hundred design
objects. Some design objects are concrete, such
as walls or pipes, and others are more abstract,
such as intended use or climate. The design of
one building encompasses many problems,
each of which can be solved by different
means. FABEL provides architects and civil engi-
neers with an integrated design environment
called a virtual construction site. It includes a
computer-aided architectural design (CAAD)
tool, an object-oriented distributed database,
and several problem solvers. Some problem
solvers are case based, but others use models
for building subsystems, and one uses rules
that have been induced from the cases in the
system. Gebhardt et al. maintain that the com-
plexity of this real-world problem makes it
untenable to use single design cases or a single
problem-solving strategy.

CAMPER is a design system that combines
CBR with RBR (Marling and Sterling 1998). It
designs a daily menu for an individual in
accordance with nutrition guidelines, personal
preferences, and aesthetic criteria. Planning
nutritional menus is a task researchers have
tried to automate since the early 1960s (Balint-
fy 1964). The first computer-based menu plan-
ner used linear programming to optimize a
menu for nutritional adequacy, cost, and con-
sumer satisfaction. The menus it generated
met its first two goals but were not considered
appetizing by people. Subsequent attempts
also failed, in part because rules for evaluating
menus were insufficient for generating satis-
factory menus in the first place. JULIA, the CBR-
CSP system that planned menus for dinner
parties, showed that past menus could provide
a basis for planning appetizing new ones (Hin-
richs 1992). However, it was a self-proclaimed
“party animal” and did not try to incorporate
nutrition criteria. CAMPER is used by a qualified
nutritionist in consultation with a client who

Articles

80 AI MAGAZINE

Planning
A planning task consists of constructing a
sequence of actions to achieve a specified set of
goals when starting from an initial situation. A
classical generative planning process involves
searching a space of possible actions to obtain
the sequence of actions solving the problem.
CBR techniques have been shown to be effec-
tive for two main reasons: First, frequently,
there is no complete domain theory that could
be used to generate plans from scratch. In this
situation, cases serve as additional knowledge
about the domain. Second, in domains where
a complete domain theory is available, gener-
ating plans from scratch can be computation-
ally expensive. CBR can be used as a source of
metaknowledge indicating how to use domain
theory to solve a given problem.

Most CBR approaches to planning that do
not assume the existence of a complete domain
theory use transformational analogy for plan
adaptation, although derivational analogy can
also be used. In transformational analogy, cases
are transformed to obtain a solution plan, as in
DIAL, the disaster response planner, which uses
transformational analogy as its control process
and derivational analogy for support (Leake
and Kinley 1998). In derivational analogy, cases
contain annotated derivational traces, which
are followed when solving a new problem.
Derivational analogy approaches are most fre-
quently used in connection with first-principles
planning systems.

CBR has been combined with two types of
first-principles planning: (1) STRIPS-style plan-
ning and (2) hierarchical planning. STRIPS-style
planning originated in the Stanford Research
Institute Problem Solver (STRIPS) Project of the
early 1970s. STRIPS was a general problem solver
that gave instructions to SHAKEY the robot as it
navigated its way through different rooms,
moving objects from one room to another
(Fikes and Nilsson 1971). In STRIPS-style plan-
ning, the assumption is made that changes
only occur in the world if indicated by the
operators in the domain definition. These
operators are used to generate the ordered steps
of a plan that, when executed, will achieve the
intended goal. In hierarchical planning, plans
have several levels of abstraction. Complex
tasks are decomposed into simpler ones. Plans
at the most concrete level consist of sequences
of STRIPS-style operators, but planning begins at
higher levels of abstraction. Hierarchical plan-
ning has been proven to be strictly more
expressive than one-level STRIPS-style planning
(Erol, Nau, and Hendler 1994).

The first system to combine CBR with STRIPS-
style planning was PRODIGY/ANALOGY (Veloso

1994). PRODIGY/ANALOGY is a generative case-
based planner. It is a total-order planning sys-
tem, which means that the steps appear in the
finished plan in the same order in which they
are generated. PRODIGY/ANALOGY is domain inde-
pendent, but it has been validated in a logistics
transportation domain in which packages are
moved among different locations by trucks and
airplanes. Cases in PRODIGY/ANALOGY are used to
guide the search process of the integrated plan-
ning system. Because the search space is of expo-
nential size on the length of the plans, planning
by first principles can be inefficient. The integra-
tion results in a significant improvement in
terms of the time needed to generate plans. Two
other systems that integrate CBR with STRIPS-style
planning to improve overall efficiency are DER-
SNLP (Ihrig and Kambhampati 1994) and
CAPLAN/CBC (Munoz-Avila and Weberskirch
1996). Unlike PRODIGY/ANALOGY, these two sys-
tems use partial-order planning, in which the
order of steps in the plan is decoupled from the
order in which the steps are generated. Both sys-
tems are domain independent, but DERSNLP was
tested on PRODIGY/ANALOGY’s logistics transporta-
tion domain, and CAPLAN/CBC was tested in a
process-planning domain for manufacturing
mechanical workpieces.

CBR has also been integrated into two hierar-
chical planning systems: (1) the joint maritime
crisis action planning (JMCAP) system (des-
Jardins, Francis, and Wolverton 1998) and the
hierarchical interactive case-based architecture
for planning (HICAP) system (Munoz-Avila et al.
1999). JMCAP and HICAP support military oper-
ations. JMCAP extends an existing hierarchical
task network (HTN) by integrating past maritime
crisis action-planning experience. The rationale
for this extension is that it more closely models
the processes used by human planners. HICAP
was tested on planning noncombatant evacua-
tion operations (NEOs). NEOs are conducted
when nonmilitary personnel must be evacuated
from dangerous situations and moved to safe
havens. Here, there is no complete domain the-
ory to use in generating plans. Cases provide
knowledge about previous military operations,
which would otherwise be unavailable for plan-
ning. Cases complement the knowledge provid-
ed by doctrine, the general guidelines for mili-
tary planning, and standard operational
procedures, the documented methods for
achieving military objectives.

Management of Long-Term
Medical Conditions
The medical domain has provided fertile
ground for CBR integration research ever since
the CBR-MBR system CASEY (Koton 1988),

Articles

SPRING 2002 81

table 2. Much can be learned from these exam-
ples. However, much remains to be learned
before system developers will be able to select
just the right integration strategy in advance of
system implementation. Thorough evaluations
of integrated systems are needed to identify the
contributions of each paradigm to the whole.
New studies are needed that do not stop with
what “works” for a particular application but
that explore beyond working solutions to
develop an understanding that could lead to
even better solutions.

Open issues in CBR integration include find-
ing the best system architectures and knowl-
edge representations for hybrid systems. One
key issue in multimodal reasoning, whether by
person or program, is how the different modes
of reasoning are integrated. If we consider CBR-
RBR integrations, we find that the modes of
reasoning with rules and cases are quite differ-
ent—logical reasoning for rules and analogical
reasoning for cases—and thus can be per-
formed by separate modules that must, howev-
er, be coordinated. For example, is CBR only to
be used to rescue RBR from difficulties or pro-
vide a sanity check, or is the processing more
intimately intertwined? How can CBR enhance
the other mode, and vice versa? Many hybrids
use CBr to narrow the search space for the oth-
er mode by seeding or localizing problem solv-
ing to “neighborhoods” around the most rele-
vant cases. Some integrations use failures in
the non-CBR mode to trigger acquisition of
cases. In most of the applications discussed in
this article, the integration of CBR with anoth-
er mode of reasoning is “straight line” in the
sense that first the program performs one and
then the other. In other systems, such as
CABARET and CARE-PARTNER, processing is more
intertwined.

At the 1998 American Association for Artifi-
cial Intelligence Workshop on CBR Integra-
tions, Aha and Daniels (1998) trichotomized
prevailing system architectures as follows: (1)
master-slave: other reasoning methods support
the CBR component; (2) slave-master: the CBR
component supports other reasoning methods;
(3) collaborating: there are less stratified collab-
orations. GYMEL, the system that harmonizes
melodies, is an example of the master-slave
architecture. CBR is the dominant mode, but
RBR assists when insufficient cases are available
to suggest a harmonization. ADIOP, which diag-
noses interoperability problems in ATM net-
works, exemplifies the slave-master architec-
ture. Here, CSP is the dominant paradigm, but
CBR is used to compensate when CSP models
are incomplete. CARE-PARTNER uses a collaborat-
ing architecture, intertwining CBR, RBR, and

which diagnosed heart failures. Although early
AI in medicine systems focused on diagnosis, a
more recent research emphasis is on systems
that support the treatment of chronic, or long-
term, conditions, which cannot be cured but
nevertheless must be managed in the best
interests of the patient. Both problem-solving
and interpretive CBR come into play, as do oth-
er reasoning modalities.

CARE-PARTNER assists clinicians responsible for
the long-term follow-up care of cancer patients
who have undergone bone-marrow transplants
(Bichindaritz, Kansu, and Sullivan 1998). It
integrates CBR, RBR, and information retrieval
to support evidence-based medical practice.
Cases are used to show how problems were
solved for past patients. Rules are derived from
standard practice guidelines and special prac-
tice pathways developed by experts. Informa-
tion retrieval is used to provide relevant docu-
ments from the medical literature that cannot
readily be translated into rules. CARE-PARTNER

stores cases, rules, and documents in a unified
knowledge base. No reasoning modality is
dominant; rather, reasoning steps from differ-
ent modalities are merged based on the prob-
lem at hand.

The Auguste Project is a current effort to pro-
vide decision support for planning the ongo-
ing care of Alzheimer’s disease patients (Mar-
ling and Whitehouse 2001). Formulated as a
study in CBR integration, researchers are focus-
ing first on those reasoning modalities natural-
ly used in this task by physicians, nurses, and
social workers, including CBR and RBR. They
next plan to explore whether less intuitive
approaches, such as Bayesian reasoning, might
augment the natural reasoning processes. Geri-
atrics practitioners rely heavily on case studies
for training, making suggestions for treatment,
sharing best practices, and reporting clinical
findings. They also rely on guidelines, or rules,
to determine which interventions to prescribe
and to tailor prescribed interventions to partic-
ular patients. Because the symptoms of Alz-
heimer’s disease vary greatly from patient to
patient, and within the same patient over time,
there is no critical pathway, or overall set of
rules, that can be applied to all patients.
Although the study is still ongoing, CBR has
already proven useful for classifying patients
into subcategories, within which small and
manageable rule sets can apply.

Open Issues and Future Work
In a case-based manner, many examples, or
cases, of CBR integration have been presented.
These example systems are summarized in

… much
remains to be
learned before

system
developers

will be able to
select just the

right
integration
strategy in
advance of

system
implemen-

tation.

Articles

82 AI MAGAZINE

information retrieval to assist with the long-
term follow-up care of cancer patients. Partici-
pants at the AAAI-98 Workshop on CBR Inte-
grations categorized their own systems,
reporting 11 master-slave integrations, 6 slave-
master integrations, and 12 collaborating rea-
soners.

Another key issue is the representation of
knowledge. Different modalities have distinct
ways of structuring knowledge. RBR relies on
rules, which represent knowledge by express-

ing relationships, typically in the form of
antecedents and consequents. Each rule con-
tains a fairly small unit of knowledge, so mul-
tiple rules are chained together during infer-
encing. CSP represents knowledge as
constraint graphs in which nodes are variables,
labels on nodes are values, and edges are con-
straints. A single graph contains a problem
description. MBR uses mathematical equations
and relationships. Genetic algorithms repre-
sent knowledge as genes, which are bit strings

Articles

SPRING 2002 83

Table 2. Summary of Case-Based Reasoning Integrations.

System Domain1 Task CBR Plus
ADIOP ATM networks Diagnosis CSP
ANAPRON Speech Synthesis RBR
AUGUSTE Project Medicine Ongoing treatment RBR
CABARET Law Argumentation, interpretation RBR
CADRE Architecture Design CSP
CADSYN Architecture Design CSP
CAMPER Menu planning Design RBR
CAPLAN/CBC Manufacturing Planning STRIPS planning
CARE-PARTNER Medicine Ongoing treatment RBR, Information
retrieval
CARMA Entomology Prediction, planning MBR
CASEY Medicine Diagnosis MBR
CHARADE Forest fires Planning CSP
COMPOSER Engineering Configuration CSP
DERSNLP Transportation Planning STRIPS planning
DIAL Disaster response Planning CBR components
FABEL Architecture Design MBR, RBR
FORMTOOL Plastic colorants Planning MBR
GREBE Law Argumentation, interpretation RBR
GYMEL Music Synthesis RBR
HICAP Military Planning Hierarchical planning
IDIOM Architecture Design CSP
IKBALS Law Argumentation, interpretation RBR, Information
retrieval
JMCAP Military Planning Hierarchical planning
JULIA Menu planning Design CSP
Maher’s Architecture Design Genetic algorithms
PRODIGY/ANALOGY Transportation Planning STRIPS planning
SAXEX Music Synthesis RBR
SOPHIST Bioprocess recipes Planning MBR
SPIRE Law Document retrieval Information retrieval
STAMPING ADVISER Engineering Design Information retrieval
Weigel’s Products for sale Configuration CSP

1. For domain-independent systems, the primary test domain is listed.

CSP = constraint-satisfaction problem.
RBR = rule-based reasoning.
MBR = model-based reasoning.

New studies are needed to clarify the advan-
tages and disadvantages of the various system
architectures and knowledge representations
that can be used. Future efforts in this area
might well lead to discovery of new synergies,
greater methodological support for building
practical integrated systems, and a better
understanding of the ways in which people
and machines reason.

Acknowledgments
This survey article grew out of discussions that
were initiated at the AAAI-98 Workshop on
CBR Integrations and continued by the coau-
thors. The coauthors are grateful to the work-
shop participants for their insights and contri-
butions.

References
Aamodt, A., and Plaza, E. 1994. Case-Based Reason-
ing: Foundational Issues, Methodological Variations,
and System Approaches. AI Communications 7(I):
39–59.

Aarts, R., and Rousu, J. 1997. Qualitative Knowledge
to Support Reasoning about Cases. In Proceedings of
the Second International Conference on Case-Based Rea-
soning, 489–498. Berlin: Springer.

Aha, D., and Daniels, J. J., eds. 1998. Case-Based Rea-
soning Integrations: Papers from the 1998 Workshop.
Menlo Park, Calif.: AAAI Press.

Arcos, J. L.; López de Mántaras, R.; and Serra, X.
1998. Integrating Background Musical Knowledge in
a CBR System for Generating Expressive Musical Per-
formances. In Case-Based Reasoning Integrations:
Papers from the 1998 Workshop, 12–16. Menlo Park,
Calif.: AAAI Press.

Ashley, K. D. 1990. Modeling Legal Argument: Reason-
ing with Cases and Hypotheticals. Cambridge, Mass.:
MIT Press.

Avesani, P.; Perini, A.; and Ricci, F. 1993. Combining
CBR and Constraint Reasoning in Planning Forest
Fire Fighting. In Proceedings of the First European
Workshop on Case-Based Reasoning, 325–328. Berlin:
Springer.

Balintfy, J. L. 1964. Menu Planning by Computer.
Communications of the ACM 7(4): 255–259.

Barletta, R. 1994. Comments from Address Given at
the Second European Conference on Case-Based Rea-
soning (ECCBR-94), 7–10 November, Chantilly,
France.

Bichindaritz, I.; Kansu, E.; and Sullivan, K. M. 1998.
Integrating Case-Based Reasoning, Rule-Based Rea-
soning, and Intelligent Information Retrieval for
Medical Problem Solving. In Case-Based Reasoning
Integrations: Papers from the 1998 Workshop, 22–27.
Menlo Park, Calif.: AAAI Press.

Branting, L. K. 1998. Integrating Cases and Models
through Approximate Model-Based Adaptation. In
Multimodal Reasoning: Papers from the 1998 AAAI
Spring Symposium, 1–5. Menlo Park, Calif.: AAAI
Press.

Branting, L. K. 1991. Building Explanations from

in which each part of the string stands for an
attribute-value pair. Information retrieval does
not structure knowledge at all; rather, it is used
to find information that has not been struc-
tured.

There is considerable flexibility in represent-
ing a case in a CBR system. It is important to
capture a description of a past problem, the
past solution to the problem, and the outcome
of applying this solution to the problem. How
these are captured varies greatly from system to
system. Integrations in which cases are directly
represented by constraint graphs or genes take
advantage of this flexibility. However, most
integrations to date maintain different knowl-
edge representations for different reasoning
modalities. What are the advantages and
disadvantages of each representation? Could
knowledge representations themselves be inte-
grated to develop useful composite knowledge
structures? More research is needed to answer
these questions.

Summary and Conclusions
Over 10 years ago, Rissland and Skalak (1989)
wrote, “At this point, researchers have only
recently begun to write about the integration
of CBR with other reasoning paradigms. We
feel that such mixed-paradigm approaches are
natural and shed light on both the cognitive
skills involved in such reasoning and on ques-
tions of architecture and control of their com-
putational models” (p. 526). Today, researchers
have uncovered many synergistic ways to com-
bine CBR with other modes of reasoning. CBR
has fruitfully been combined with RBR, CSP
solving, MBR, genetic algorithms, and infor-
mation retrieval. CBR integrations have sup-
ported a wide range of tasks, including inter-
pretation and argumentation, design and
synthesis, planning, and management of long-
term medical conditions. Many useful syner-
gies have emerged as different reasoning strate-
gies extend and complement each other.
Integrated systems have enabled more accurate
modeling of domain knowledge, compensa-
tion for incomplete domain models and rule
bases, compensation for small case bases, sim-
plification of knowledge acquisition, improved
solution quality, improved system efficiency,
leveraging of past experiences, and compensa-
tion for shortcomings inherent in individual
reasoning strategies.

More research is needed because open issues
remain to be resolved. Thorough system evalu-
ations are needed to pinpoint the specific
strengths and weaknesses of different reason-
ing strategies for performing different tasks.

Articles

84 AI MAGAZINE

Rules and Structured Cases. International Journal of
Man-Machine Studies 34(6): 797–837.

Cheatham, W., and Graf, J. 1997. Case-Based Reason-
ing in Color Matching. In Proceedings of the Second
International Conference on Case-Based Reasoning,
1–12. Berlin: Springer.

Daniels, J. J., and Rissland, E. L. 1997. What You Saw
Is What You Want: Using Cases to Seed Information
Retrieval. In Proceedings of the Second International
Conference on Case-Based Reasoning, 325–336. Berlin:
Springer.

desJardins, M.; Francis, A.; and Wolverton, M. 1998.
Hybrid Planning: An Approach to Integrating Gener-
ative and Case-Based Planning. In Case-Based Reason-
ing Integrations: Papers from the 1998 Workshop,
45–49. Menlo Park, Calif.: AAAI Press.

Erol, K.; Nau, D.; and Hendler, J. 1994. HTN Plan-
ning: Complexity and Expressivity. In Proceedings of
the Twelfth National Conference on Artificial Intelli-
gence, 1123–1128. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Faltings, B. 1996. Working Group in Model-Based
Design and Reasoning. Part II: Design. AI Communi-
cations 9(2): 65–73.

Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A New
Approach to the Application of Theorem Proving in
Problem Solving. Artificial Intelligence 5(2): 189–208.

Freuder, E., and Mackworth, A. 1992. Constraint-
Based Reasoning. Artificial Intelligence (Special Issue)
58.

Gebhardt, F.; Voss, A.; Gräther, W.; and Schmidt-Belz,
B. 1997. Reasoning with Complex Cases. Boston, Mass.:
Kluwer Academic.

Golding, A. R., and Rosenbloom, P. S. 1991. Improv-
ing Rule-Based Systems through Case-Based Reason-
ing. In Proceedings of the Ninth National Confer-
ence on Artificial Intelligence, 22–27. Menlo Park,
Calif.: American Association for Artificial Intelli-
gence.

Hammond, K. J. 1989. Case-Based Planning: Viewing
Planning as a Memory Task. San Diego, Calif.: Acade-
mic.

Hammond, K. J. 1986. CHEF: A Model for Case-Based
Planning. In Proceedings of the Fifth National
Conference on Artificial Intelligence, 267–271. Men-
lo Park, Calif.: American Association for Artificial
Intelligence.

Hart, H. L. A. 1958. Positivism and the Separation of
Law and Morals. Harvard Law Review 71(4): 593–629.
Reprinted in Hart, H. L. A. 1983. Essays in Jurispru-
dence and Philosophy. Oxford: Clarendon Press.

Hayes-Roth, F.; Waterman, D. A.; and Lenat, D. B.,
eds. 1983. Building Expert Systems. Reading, Mass.:
Addison-Wesley.

Hinrichs, T. R. 1992. Problem Solving in Open Worlds:
A Case Study in Design. Hillsdale, N. J.: Lawrence Erl-
baum.

Hua, K., and Faltings, B. 1993. Exploring Case-Based
Building Design—CADRE. AI in Engineering Design,
Analysis and Manufacturing 7(2): 135–143.

Ihrig, L. H., and Kambhampati, S. 1994. Derivation
Replay for Partial-Order Planning. In Proceedings of

the Twelfth National Conference on Artificial Intelli-
gence, 992–997. Menlo Park, Calif.: American Asso-
ciation for Artificial Intelligence.

Kolodner, J. 1993. Case-Based Reasoning. San Francis-
co, Calif.: Morgan Kaufmann.

Kolodner, J. L., and Leake, D. B. 1996. A Tutorial
Introduction to Case-Based Reasoning. In Case-Based
Reasoning: Experiences, Lessons, and Future Directions,
ed. D. B. Leake, 31–66. Menlo Park, Calif.: AAAI
Press.

Koton, P. 1988. Reasoning about Evidence in Causal
Explanations. In Proceedings of the Seventh Nation-
al Conference on Artificial Intelligence, 256–261.
Menlo Park, Calif.: American Association for Artifi-
cial Intelligence.

Kumar, V. 1992. Algorithms for Constraint-Satisfac-
tion Problems: A Survey. AI Magazine 13(1): 32–44.

Leake, D. B., and Kinley, A. 1998. Integrating CBR
Components within a Case-Based Planner. In Case-
Based Reasoning Integrations: Papers from the 1998
Workshop, 80–84. Menlo Park, Calif.: AAAI Press.

Leake, D. B.; Birnbaum, L.; Hammond, K.; Marlow,
C.; and Yang, H. 1999. Integrating Information
Resources: A Case Study of Engineering Design Sup-
port. In Proceedings of the Third International Confer-
ence on Case-Based Reasoning, 482–496. Berlin:
Springer.

Maher, M., and Zhang, D. 1991. CADSYN: Using Case
and Decomposition Knowledge for Design Synthesis.
In Artificial Intelligence in Design, ed. J. S. Gero,
137–150. Oxford, U.K.: Butterworth-Heineman.

Maher, M. L. 1998. CBR as a Framework for Design:
Augmenting CBR with Other AI Techniques. In Case-
Based Reasoning Integrations: Papers from the 1998
Workshop, 96–101. Menlo Park, Calif.: AAAI Press.

Marling, C., and Sterling, L. 1998. Integrating CBR
and RBR for Nutritional Menu Design. In Case-Based
Reasoning Integrations: Papers from the 1998 Workshop,
102–107. Menlo Park, Calif.: AAAI Press.

Marling, C. R., and Whitehouse, P. J. 2001. The
AUGUSTE Project: Decision Support for Patient Care. In
Proceedings of the International ICSC-NAISO Con-
gress on Computational Intelligence: Methods and
Applications, 65–70. Canada/The Netherlands: ICSC
Academic.

Muñoz-Avila, H., and Weberskirch, F. 1996. Planning
for Manufacturing Workpieces by Storing, Indexing
and Replaying Planning Decisions. In Proceedings of
the International Conference on AI Planning Systems.
Menlo Park, Calif.: AAAI Press.

Muñoz-Avila, H.; McFarlane, D.; Aha, D. W.; Ballas,
J.; Breslow, L. A.; and Nau, D. 1999. Using Guidelines
to Constrain Interactive Case-Based HTN Planning.
In Proceedings of the Third International Conference on
Case-Based Reasoning, 288–302. Berlin: Springer.

Puget, J. F., and Leconte, M. 1995. Beyond the Glass
Box: Constraints as Objects. In Proceedings of the
International Logic Programming Symposium, 513–527.
Cambridge, Mass.: MIT Press.

Purvis, L. 1998. Synergy and Commonality in Case-
Based and Constraint-Based Reasoning. In Multi-
modal Reasoning: Papers from the 1998 AAAI Spring
Symposium, 80–84. Menlo Park, Calif.: AAAI Press.

Articles

SPRING 2002 85

Edwina Rissland is pro-
fessor of computer sci-
ence at the University of
Massachusetts at Am-
herst. For many years,
she was also a lecturer on
law at the Harvard Law
School, where she taught
a course on her specialty

of AI and law. She received her Sc.B. from
Brown University and her Ph.D. in mathe-
matics from the Massachusetts Institute of
Technology. She has long been interested
in how people and machines reason with
examples and cases and was one of the
founders of case-based reasoning. Her e-
mail address is rissland@cs.umass. edu.

Hector Muñoz-Avila is an assistant profes-
sor in the Computer Science and Engineer-
ing Department at Lehigh University. He
received his B.S. and M.S. in computer sci-
ence and B.S. in mathematics from the Uni-
versity of the Andes in Columbia and his
doctorate from the University of Kaiser-
slautern in Germany. Previously, he was a
researcher at the University of Maryland at
College Park and at the Navy Center for
Applied Research in Artificial Intelligence.
His e-mail address is munoz@cse.lehigh.
edu.

David Aha leads the Intelligent Decision
Aids Group at the Navy Center for Applied
Research in Artificial Intelligence, a branch
of the Naval Research Laboratory. His
research interests currently focus on mixed-
initiative planning and intelligent lessons
learned systems. Aha is an editor for the
Machine Learning journal, is an editorial
board member for Applied Intelligence, and
was program cochair for the 2001 Interna-
tional Conference on Case-Based Reason-
ing. His e-mail address is aha@aic.navy.mil.

Constraint Satisfaction with Case-Based
Reasoning. Paper presented at the Ninth
International Workshop on Principles of
Diagnosis (DX-98), 24–27 May, Cape Cod,
Massachusetts.

Sqalli, M. H.; Purvis, L.; and Freuder, E. C.
1999. Survey of Applications Integrating
Constraint Satisfaction and Case-Based
Reasoning. Paper presented at PACLP99:
The First International Conference and
Exhibition on the Practical Application of
Constraint Technologies and Logic Pro-
gramming, 19–21 April, London, United
Kingdom.

Veloso, M. 1994. Planning and Learning by
Analogical Reasoning. Berlin: Springer.

Wallace, M. 1996. Practical Applications of
Constraint Programming. Constraints 1(1):
139–168.

Weigel, R., and Faltings, B. 1998. Inter-
changeability for Case Adaptation in Con-
figuration Problems. In Multimodal Reason-
ing: Papers from the 1998 AAAI Spring
Symposium, 69–73. Menlo Park, Calif.: AAAI
Press.

Zeleznikow, J.; Vossos, G.; and Hunter, D.
1994. The IKBALS Project: Multimodal Rea-
soning in Legal Knowledge-Based Systems.
Artificial Intelligence and Law 2(3):169–203.

Cynthia Marling is an
assistant professor in the
School of Electrical Engi-
neering and Computer
Science at Ohio Univer-
sity. She received her
M.S. and Ph.D. in com-
puter science from Case
Western Reserve Univer-

sity. Between degrees, she worked as a
knowledge engineer and project leader for
General Electric. Her research interests are
case-based reasoning, multimodal reason-
ing, robotic soccer, and AI in medicine. Her
e-mail address is marling@ohio.edu.

Mohammed Sqalli is a
senior automation test-
ing specialist at the Tele-
com Innovation Center
in Siemens Canada Lim-
ited. Sqalli received his
M.S. in computer science
from the University of
New Hampshire in 1996

and his Master of Engineering in computer
science from the Mahammadia Engineer-
ing School, Rabat, Morocco, in 1992. He is
currently a Ph.D. candidate in Systems
Design Engineering at the University of
New Hampshire. His dissertation research
involves integrating constraint satisfaction
and case-based reasoning. His e-mail
address is msqalli@cs.unh.edu.

Purvis, L., and Pu, P. 1996. An Approach to
Case Combination. Paper presented at the
Workshop on Adaptation in Case-Based
Reasoning, Twelfth European Conference
on Artificial Intelligence, 11–16 August,
Budapest, Hungary.

Riesbeck, C. K., and Schank, R. C. 1989.
Inside Case-Based Reasoning. Hillsdale, N.J.:
Lawrence Erlbaum.

Rissland, E. L. 1980. Example Generation.
Paper presented at the Third National Con-
ference of the Canadian Society for Com-
putational Studies of Intelligence, May, Vic-
toria, British, Columbia.

Rissland, E. L., and Daniels, J. J. 1996. The
Synergistic Application of CBR to IR. Artifi-
cial Intelligence Review (Special Issue on the
Use of AI in Information Retrieval) 10(5–6):
441–475.

Rissland, E. L., and Skalak, D. B. 1989.
Combining Case-Based and Rule-Based
Reasoning: A Heuristic Approach. In Pro-
ceedings of the Eleventh International
Joint Conference on Artificial Intelligence,
524–530. Menlo Park, Calif.: International
Joint Conferences on Artificial Intelligence.

Rissland, E. L., and Skalak, D. B. 1991.
CABARET: Rule Interpretation in a Hybrid
Architecture. International Journal of Man-
Machine Studies 34(6): 839–887.

Rissland, E. L., and Soloway, E. M. 1980.
Overview of an Example Generation Sys-
tem. In Proceedings of the First National
Conference on Artificial Intelligence,
256–258. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Rissland, E. L.; Valcarce, E. M.; and Ashley,
K. D. 1984. Explaining and Arguing with
Examples. In Proceedings of the Fourth
National Conference on Artificial Intelli-
gence, 288–294. Menlo Park, Calif.: Ameri-
can Association for Artificial Intelligence.

Sabater, J.; Arcos, J. L.; and López de Mán-
taras, R. 1998. Using Rules to Support Case-
Based Reasoning for Harmonizing Mel-
odies. In Multimodal Reasoning: Papers from
the 1998 AAAI Spring Symposium, 147–151.
Menlo Park, Calif.: AAAI Press.

Skalak, D. B., and Rissland, E. L. 1992.
Arguments and Cases: An Inevitable Inter-
twining. Artificial Intelligence and Law: An
International Journal 1(1): 3–48. Reprinted
in Skalak, D. B., and Rissland, E. L. 1998.
The Philosophy of Legal Reasoning: Scientific
Models of Legal Reasoning, ed. S. Brewer,
249–290. New York: Garland.

Smith, I.; Lottaz, C.; and Faltings, B. 1995.
Spatial Composition Using Cases: IDIOM. In
Proceedings of the First International Confer-
ence on Case-Based Reasoning, 88–97. Berlin:
Springer.

Sqalli, M., and Freuder, E. 1998. Diagnosing
Interoperability Problems by Enhancing

Articles

86 AI MAGAZINE

