
■ This article reports on an extensive survey and
analysis of research work related to machine learn-
ing as it applies to automated planning over the
past 30 years. Major research contributions are
broadly characterized by learning method and
then descriptive subcategories. Survey results re-
veal learning techniques that have extensively
been applied and a number that have received
scant attention. We extend the survey analysis to
suggest promising avenues for future research in
learning based on both previous experience and
current needs in the planning community.

In this article, we consider the symbiosis of
two of the most broadly recognized hall-
marks of intelligence: (1) planning—solving

problems in which one uses beliefs about ac-
tions and their consequences to construct a se-
quence of actions that achieve one’s goals—
and (2) learning—using past experience and pre-
cepts to improve one’s ability to act in the fu-
ture. Within the AI research community, ma-
chine learning is viewed as a potentially
powerful means of endowing an agent with
greater autonomy and flexibility, often com-
pensating for the designer’s incomplete knowl-
edge of the world that the agent will face and
incurring low overhead in terms of human
oversight and control. If we view a computer
program with learning capabilities as an agent,
then we can say that learning takes place as a
result of the interaction of the agent and the
world and observation by the agent of its own
decision-making processes. Planning is one
such decision-making process that such an
agent might undertake, and a corpus of work

spanning some 30 years attests that it is an in-
teresting, broad, and fertile field in which
learning techniques can be applied to advan-
tage. We focus here on this learning-in-plan-
ning research and utilize both tables and graph-
ic maps of existing studies to spotlight the
combinations of planning-learning methods
that have received the most attention as well as
those that have scarcely been explored. We do
not attempt to provide, in this limited space, a
tutorial of the broad range of planning and
learning methodologies, assuming instead that
the interested reader has at least passing famil-
iarity with these fields.

A cursory review of the state of the art in
learning in planning during the early to mid-
1990s reveals that the primary impetus for
learning was to make up for often debilitating
weaknesses in the planners themselves. The
general-purpose planning systems of even a
decade ago struggled to solve simple problems
in the classical benchmark domains; blocks
world problems of 10 blocks lay beyond their
capabilities as did most logistics problems
(Kodtratoff and Michalski 1990; Minton 1993).
The planners of the period used only weak
guidance in traversing their search spaces, so it
is not surprising that augmenting the systems
to learn some such guidance was often a win-
ning strategy. Relative to the largely naïve base
planner, the learning-enhanced systems dem-
onstrated improvements in both the size of
problems that could be addressed and the
speed with which they could be solved (Kamb-
hampati, Katukam, and Qu 1996; Leckie and
Zukerman 1998; Minton et. al. 1989; Veloso
and Carbonell 1993).

Articles

SUMMER 2003    73

Learning-Assisted 
Automated Planning

Looking Back, Taking Stock, 
Going Forward

Terry Zimmerman and Subbarao Kambhampati

Copyright © 2003, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2003 / $2.00



Where Learning 
Might Assist Planning

In a number of ways, automated planning pre-
sents a fertile field for the application of ma-
chine learning. The simple (STRIPS) planning
problem itself has been shown to be PSPACE
complete (Bylander 1992); thus, for planning
systems to handle problems large enough to be
of interest, they must greatly reduce the size of
the search space they traverse. Indeed, the
great preponderance of planning research,
from alternate formulations of the planning
problem to the design of effective search
heuristics, can be seen as addressing this prob-
lem of pruning the search space. It is therefore
not surprising that the earliest and most wide-
spread application of learning to automated
planning has focused on the aspect of expedit-
ing solution search.

As automated planning advanced beyond
solving trivial problems, the issue of plan qual-
ity received increased attention. Although
there are often many valid plans for a given
problem, generating one judged acceptable by
the user or optimizing over several quality met-
rics can increase the complexity of the plan-
ning task immensely. A learning-augmented
planning system that can perceive a user’s pref-
erences and bias its subsequent search accord-
ingly offers a means of reducing this complex-
ity. Learning seems to have an obvious role in
mixed-initiative planning, where it might be
imperative to perceive and accommodate the
expertise, preferences, and idiosyncrasies of
humans. Finally, expanding our view to a real-
world situation in which a planning system
might operate, we are likely to confront uncer-
tainty as a fact of life, and complete and robust
domain theories are rare. As we show, the study
of machine learning methods in planning ap-
proaches that address uncertainty is in its in-
fancy.

Machine learning offers the promise of ad-
dressing such issues by endowing the planning
system with the ability to profit from observa-
tion of its problem space and its decision-mak-
ing experience, whether or not its currently
preferred decision leads to success. However, to
actually realize this promise within a given ap-
plication challenges the planning system de-
signer on many fronts. Success is generally
heavily dependent on complex relationships
and interconnections between planning and
learning. In figure 1, we suggest five dimen-
sions that capture perhaps the most important
of these system design issues: (1) type of plan-
ning problem, (2) approach to planning, (3)
goal for the learning component, (4) planning-

With the advent of several new genres of
planning systems in the past five to six years,
the entire base-performance level against
which any learning-augmented system must
compare has shifted dramatically. It is argu-
ably a more difficult proposition to accelerate
a planner in this generation by outfitting it
with some form of online learning because
the overhead cost incurred by the learning
system can overwhelm the gains in search ef-
ficiency. This, in part, might explain why the
planning community appears to have paid
less attention to learning in recent years.
From the machine learning–community per-
spective,  Langley (1997, p. 18) remarked on
the swell of research in learning for problem
solving and planning that took place in the
1980s as well as to note the subsequent tail-
off: “One source is the absence of robust algo-
rithms for learning in natural language, plan-
ning, scheduling, and configuration, but
these will come only if basic researchers re-
gain their interest in these problems.”

Of course, interest in learning within the
planning community should not be limited to
anticipated speedup benefits. As automated
planning has advanced its reach to the point
where it can cross the threshold from toy prob-
lems to some interesting real-world applica-
tions, a variety of issues come into focus. They
range from dealing with incomplete and un-
certain environments to developing an effec-
tive interface with human users.

Our purpose in this article is to develop, us-
ing an extensive survey of published work, a
broad perspective of the diverse research that
has been conducted to date in learning in
planning and to conjecture about profitable
directions for future work in this area. The re-
mainder of the article is organized into three
parts: (1) what learning is likely to be of assis-
tance in automated planning, (2) what roles
has learning actually played in the relevant
planning research conducted to date, and (3)
where might the research community gainful-
ly direct its attentions in the near future. In
the section entitled Where Learning Might As-
sist Planning, we describe a set of five dimen-
sions for classifying learning-in-planning sys-
tems with respect to properties of both the
underlying planning engine and the learning
component. By mapping the breadth of the
surveyed work along these dimensions, we re-
veal some underlying research trends, pat-
terns, and possible oversights. This mapping
motivates our speculation in the final section
on some promising directions for such re-
search in the near future, given our current
generation of planning systems.
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execution phase in which learning is conduct-
ed, and (5) type of learning method.

We hope to show that this set of dimensions
is useful in both gaining useful perspective on
the work that has been done in learning-aug-
mented planning and speculating about prof-
itable directions for future research. Admitted-
ly, these are not independent or orthogonal
dimensions; they also do not make up an ex-
haustive list of relevant factors in the design of
an effective learning component for a given
planner. Among other candidate dimensions
that could have been included are type of plan
(for example, conditional, conformant, serial,
or parallel actions), type of knowledge learned
(domain or search control), learning impetus
(data driven or knowledge driven), and type of
organization (hierarchical or flat). Given the

corpus of work to date and the difficulty of vi-
sualizing and presenting patterns and relation-
ships in high-dimensional data, we settled on
the five dimensions of figure 1 as the most re-
vealing. Before reporting on the literature sur-
vey, we briefly discuss each of these dimen-
sions.

Planning Problem Type
The nature of the environment in which the
planner must conduct its reasoning defines
where a given problem lies in the continuum
of classes from classical to full-scope planning.
Here, classical planning refers to a world model
in which fluents are propositional, and they
don’t change unless the planning agent acts to
change them, all relevant attributes can be ob-
served at any time, the impact of executing an
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Figure 1. Five Dimensions Characterizing Automated Planning Systems Augmented with a Learning Component.
CSP = constraint-satisfaction programming. EBL = explanation-based learning. SAT = satisfiability.



state-space search (Kambhampati 2000). BLACK-
BOX (Kautz and Selman 1999) uses GRAPHPLAN’s
disjunctive representation of states and itera-
tively converts the search into a SAT problem.

Goal of Planner’s 
Learning Component
There is a wide variety of targets that the learn-
ing component of a planning system might
aim toward, such as learning search control
rules, learning to avoid dead-end or unpromis-
ing states, or improving an incomplete domain
theory. As indicated in figure 1, they can be
categorized broadly into one of three groups:
(1) learning to speed up planning, (2) learning
to elicit or improve the planning domain the-
ory, or (3) learning to improve the quality of
the plans produced (where quality can have a
wide range of definitions).

Learning and Improving Domain Theo-
ry    Automated planning implies the presence
of a domain theory—the descriptions of the ac-
tions available to the planner. When an exact
model of how an agent’s actions affect its
world is unavailable (a nonclassical planning
problem), there are obvious advantages to a
planner that can evolve its domain theory by
learning. Few interesting environments are
simple and certain enough to admit a complete
model of their physics, so it’s likely that even
“the best laid plans” based on a static domain
theory will occasionally (that is, too often) go
astray. Each such instance, appropriately fed
back to the planner, provides a learning oppor-
tunity for evolving the domain theory toward
a version more consistent with the actual envi-
ronment in which its plans must succeed.

Even in classical planning, the designer of a
problem domain generally has many valid al-
ternative ways of specifying the actions, and it
is well known that the exact form of the action
descriptions can have a large impact on the ef-
ficiency of a given planner on a given problem.
Even if the human designer can identify some
of the complex manner in which the actions in
a domain description will interact, he/she will
likely be faced with trade-offs between efficien-
cy and factors such as compactness, compre-
hensibility, and expressiveness.

Planning Speedup    In all but the most
trivial of problems, a planner will have to con-
duct considerable search to construct a solu-
tion, in the course of which it will be forced to
backtrack numerous times. The primary goals
of speedup learning are to avoid unpromising
portions of the search space and bias the
search in directions most likely to lead to
high-quality plans.

action on the environment is known and de-
terministic, and the effects of taking an action
occur instantly. If we relax all these constraints
such that fluents can take on a continuous
range of values (for example, metric), a fluent
might change its value spontaneously or for
reasons other than agent actions—for example,
the world has hidden variables, the exact im-
pact of acting cannot be predicted, and actions
have durations—then we are in the class of
full-scope planning problems. In between these
extremes lies a wide variety of interesting and
practical planning problem types, such as clas-
sical planning with a partially observable
world (for example, playing poker) and classi-
cal planning where actions realistically require
significant periods of time to execute (for ex-
ample, logistics domains). The difficulty with
even the classical planning problem is that it
largely occupied the full attention of the re-
search community until the past few years. The
current extension into various neoclassical,
temporal, and metric planning modes has been
spurred in part by impressive advances in auto-
mated planning technology over the past six
years or so.

Planning Approach
Planning as a subfield of AI has roots in Newell
and Simon’s 1960-era problem-solving system,
GPS, and theorem proving. At a high level,
planning can be viewed as either a problem
solver or theorem prover. Planning methods
can further be seen as either search processes or
model checking. Among planners most com-
monly characterized by search mode, there are
two broad categories: (1) search in state space
and (2) search in a space of plans. It is possible
to further partition current state-space plan-
ners into those that maintain a conjunctive
state representation and those that search in a
disjunctive representation of possible states.

Planners most generally characterized as
model checkers (although they also conduct
search) involve recompiling the planning prob-
lem into a representation that can be tackled by
a particular problem solution engine. These sys-
tems can be partitioned into three categories:
(1) satisfiability (SAT), constraint-satisfaction
problems (CSPs), and integer linear program-
ming (IP). Figure 1 lists these three different
methods along with representative planning
systems for each. These categories are not en-
tirely disjoint for purposes of classifying plan-
ners because some systems use a hybrid ap-
proach or can be viewed as examples of more
than one method. GRAPHPLAN (Blum and Furst
1997), for example, can be seen as either a dy-
namic CSP or as  a conductor for disjunctive
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Improving Plan Quality    This category
ranges from learning to bias the planner to-
ward plans with a specified attribute or metric
value to learning a user’s preferences in plans
and variations of mixed-initiative planning.

Planning Phase in Which 
Learning Is Conducted
At least three opportunities for learning pre-
sent themselves over the course of a planning
and execution cycle: (1) before planning starts,
(2) during the process of finding a valid plan,
and (3) during the execution of a plan.

Learning before Planning Starts    Before
the solution search even begins, the specifica-
tion of the planning problem itself presents
learning opportunities. This phase is closely
connected to the aspect of learning and im-
proving the domain theory but encompasses
only preprocessing of a given domain theory. It
is done offline and produces a modified do-
main that is useful for all future domain prob-
lems.

Learning during the Process of Finding
a Valid Plan    Planners capable of learning
in this mode have been augmented with some
means of observing their own decision-making
process. They then take advantage of their ex-
perience during planning to expedite the fur-
ther planning or improve the quality of plans
generated. The learning process itself can ei-
ther  be online or offline.

Learning during the Execution of a Plan
A planner has yet another opportunity to im-
prove its performance when it is an embedded
component of a system that can execute a plan
and provide sensory feedback. A system that
seeks to improve an incomplete domain theory
would conduct learning in this phase, as might
a planner seeking to improve plan quality
based on actual execution experience. The
learning process itself can either be online or
offline.

Type of Learning
The machine learning techniques themselves
can be classified in a variety of ways, irrespec-
tive of the learning goal or the planning phase
they might be used in. Two of the broadest tra-
ditional class distinctions that can be drawn
are between so-called inductive (or empirical)
methods and deductive (or analytic) methods.
In figure 1, we broadly partition the machine
learning–techniques dimension into these two
categories along with a multistrategy ap-
proach. We then consider additional properties
that can be used to characterize a given meth-
od. The inductive-deductive classification is

drawn based on the following formulations of
the learning problem:

Inductive learning: The learner is confront-
ed with a hypothesis space H and a set of train-
ing examples D. The desired output is a hy-
pothesis h from H that is consistent with these
training examples.

Analytic learning: The learner is confront-
ed with the same hypothesis space and train-
ing examples as for inductive learning. Howev-
er, the learner has an additional input: a
domain theory B composed of background
knowledge that can be used to help explain ob-
served training examples. The desired output is
a hypothesis h from H that is consistent with
both the training examples D and the domain
theory B.

Understanding the advantages and disad-
vantages of applying a given machine learning
technique to a given planning system can help
to make sense of any research bias that be-
comes apparent in the survey tables. The pri-
mary types of analytic learning systems devel-
oped to date, along with their relative
strengths and weaknesses and an indication of
their inductive biases, are listed in table 1. The
major types of pure inductive learning systems
are similarly described in table 2. Admittedly,
the various subcategories within these tables
are not disjoint, and they don’t nicely partition
the entire class (inductive or analytic).

The research literature itself conflicts at
times about what constitutes learning in a giv-
en implementation, so tables 1 and 2 reflect
the decisions made in this regard for this study.

The classification scheme we propose for
learning-augmented planning systems is per-
haps most inadequate when it comes to rein-
forcement learning. We discuss this special case,
in which planning and learning are inextricably
intertwined, in the sidebar “Reinforcement
Learning: The Special Case.”

Analogical learning is only represented in
table 1 by a specialized and constrained form
known as derivational analogy and the closely
related case-based reasoning formulism. More
flexible and powerful forms of analogy can be
envisioned (compare Hofstadter and Marshall
[1996, 1993]), but the lack of active research in
this area within the machine learning commu-
nity effectively eliminates more general analo-
gy as a useful category in our learning-in-plan-
ning survey.

The three columns for each technique given
in tables 1 and 2 give a sense of the degree to
which the method can be effective when ap-
plied to a given learning problem, in our case,
automated planning. Two columns summarize
the relative strengths and weaknesses of each
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ly justified hypotheses. The logical justifica-
tions fall short when the prior knowledge is
flawed, and the statistical justifications are sus-
pect when data are scarce, or assumptions
about distributions are questionable.

We next consider the learning-in-planning
work that has been done in light of the charac-
terization structure given in figure 1.

What Role Has Learning 
Played in Planning?

We report here the results of an extensive sur-
vey of AI research literature focused on applica-
tions of machine learning techniques to plan-
ning. Research in the area of machine learning
goes back at least as far back as 1959, with
Arthur Samuel’s (1959) checkers-playing pro-
gram that improved its performance through
learning. It is noteworthy that perhaps the first
work in what was to become the AI field of
planning (STRIPS [Fikes and Nilsson 1971]) was
quickly followed by a learning-augmented ver-
sion that could improve its performance by an-
alyzing its search experience (Fikes, Hart, and
Nilsson 1972). Space considerations preclude
an all-inclusive survey for this 30-year span,

technique. The column headed Models refers
to the type of function or structure that the
method was designed to represent or process. A
method chosen to learn a particular function is
not well suited if it is either incapable of ex-
pressing the function or is inherently much
more expressive than required. This choice of
representation involves a crucial trade-off. A
very expressive representation that allows the
target function to be represented as close as
possible will also require more training data to
choose among the alternative hypotheses it
can represent.

The heart of the learning problem is how to
successfully generalize from examples. Analyti-
c learning leans on the learner’s background
knowledge to analyze a given training instance
to discern the relevant features. In many do-
mains, such as the stock market, complete and
correct background knowledge is not available.
In these cases, inductive techniques that can
discern regularities over many examples in the
absence of a domain model can prove useful.
One possible motivation for adopting a multi-
strategy approach is that analytic learning
methods generate logically justified hypothe-
ses, but inductive methods generate statistical-
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Analytic Technique Models Strengths Weaknesses

Nogood  Learning
(Memoization,
Caching)

Inconsistent states
and sets of fluents

Simple, fast learning

Generally low computational
overhead

Practical, widely used

Low strength learning—each
nogood typically prunes small
sections of search space

Difficult to generalize across
problems

Memory requirements can be
high

Explanation-Based
Learning  (EBL)

Search control rules

Domain refinement

Uses a domain theory—the available
background knowledge

Can learn from a single training
example

If-then rules are generally intuitive
(readable)

Widely used

Requires a domain theory—
incorrect domain theory can
lead to incorrect deductions

Rule utility problem

Static Analysis and
Abstractions Learning

Existing problem /
domain invariants or
structure

Performed “offline”, benefits
generally available for all subsequent
problems in domain.

Benefits vary greatly
depending on domain
and problem

Derivational Analogy /
Case-Based Reasoning
(CBR)

Similarity between
current state and
previously cataloged
states

Holds potential for shortcutting
much planning effort where similar
problem states arise frequently.

Extendable to full analogy?

Large space required as case
library builds

Case-matching overhead

Revising old plan can be
costly

Table 1. Characterization of the Most Common Analytic Learning Techniques.



but we wanted to list either seminal studies in
each category or a typical representative study
if the category has many.

It is difficult to present the survey results in
2-dimensional (2D) format such that the five
dimensions represented in figure 1 are usefully
reflected. We used three different formats, em-
phasizing different combinations and order-
ings of the figure 1 dimensions:

First is a set of three tables organized around
just two dimensions: (1) type of learning and
(2) type of planning.

Second is a set of tables reflecting all five di-
mensions for each relevant study in the survey.

Third is a graphic representation providing a

visual mapping of the studies’ demographics
along the five dimensions.

We discuss each of these representations in
the following subsections.

Survey Tables according to Learning
Type and Planning Type
Table 3A deals with studies focused primarily
on analytic (deductive) learning in its various
forms, and table 3B is concerned with induc-
tive learning. Table 3C addresses studies and
multistrategy systems that aim at some combi-
nation of analytic and inductive techniques.
All studies and publications appearing in these
tables are listed in full in the reference section.
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Inductive Technique Models Strengths Weaknesses

Decision Tree Learning

Discrete-valued
functions, classification
problems

Robust to noisy data,
missing values

Learns disjunctive clauses

If-then rules are easily
understandable

Practical, widely used

Approximating real-valued
or vector-valued, functions
(essentially propositional)

Incapable of learning
relational predicates

Artificial
Neural Networks

Discrete-, real-,  and
vector-valued functions

Robust to noisy and complex
data, errors in data

Long training times are
common; learned target
function is largely
inscrutable

Inductive Logic
Programming

First-order logic, theories
as logic programs

Robust to noisy data,
missing values.

More expressive than
propositional-based learners

Able to generate new
predicates.

If-then rules (Horn clauses)
are easily understandable

Large training sample size
might be needed to acquire
effective set of predicates

Rule utility problem

Bayesian Learning Probabilistic inference
Hypotheses that make
probabilistic  predictions

Readily combine prior
knowledge with observed
data

Modifies hypothesis
probability incrementally
based on each training
example.

Require large initial
probability sets

High computational cost to
obtain Bayes's optimal
hypothesis

Reinforcement Learning Control policy to
maximize rewards.

Fits the MDP setting

Domain theory not required

Handling actions with non-
deterministic outcomes

Optimal policy from
nonoptimal training sets,
facilitates life-long learning

Depends on a real-valued
reward signal for each
transition

Difficulty handling large
state spaces. Convergence
can be slow, space
requirements can be huge

Table 2. Characterization of the Most Common Inductive Learning Techniques.
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Planning ApplicationsAnalytic
Learning

General
Applications

State Space
(Conjunctive / Disjunctive)

Plan Space Compilation
(CSP / SAT / IP)

Static / Domain
Analysis and
Abstractions

Learning Abstractions
Sacerdoti (1974) ABSTRIPS

Knoblock (1990) ALPINE

Static Analysis, Domain Invars
Dawson and Siklossy (1977)
REFLECT

Etzioni (1993) STATIC
[PRODIGY]

Perez and Etzioni (1992)
DYNAMIC (with EBL)[PRODIGY]

Nebel, Koehler, and Dimo-
poulos (1997) RIFO

Gerevini and Schubert (1998)
DISCOPLAN

Fox and Long (1998, 1999)
STAN/ TIM [GRAPHPlan]

(Rintanen 2000)

Smith and Peot
(1993) [SNLP]

Gerevini and
Schubert (1996)
[UCPOP]

Fikes and Nilsson (1972)
STRIPS

Minton et al. (1989) PRODIGY

Gratch and DeJong (1992)
COMPOSER [PRODIGY]

Bhatnagar and Mostow (1994)
FAILSAFE

Borrajo and Veloso (1997)
HAMLET (See also multistrategy)

Kambhampati (2000)
GRAPHPlan-EBL

Explanation-Based
Learning (EBL)

General Problem
Solving (Chunking)
Laird et al. (1987)
SOAR

Horn Clause Rules
Kedar-Cabelli (1987)
Prolog-EBG

Symbolic Integration
Mitchell et al. (1986)
LEX-2 (See also multi-
strategy)

Permissive Real-World Plans

Bennett and DeJong (1996)
GRASPER

Chien (1989)

Kambhampati,
Katukam, and Qu
(1996) UCPOP-EBL

Wolfman and Weld
(1999) LPSAT
[RELSAT]

Nogood Learning
Kautz and Selman
(1999) BLACKBOX
(using RELSAT)

Do and Kambham-
pati (2001) GP-CSP
[GRAPHPlan]

Analogical

Case-Based
Reasoning

Jones and Langley
(1995) EUREKA

Microdomain
Analogy Maker
Hofstadter and
Marshall (1993, 1996)
COPYCAT

Conceptual Design
Sycara et al. (1992)
CADET

Legal Reasoning
by Analogy
Ashley and McLaren
(1995) TRUTH-
TELLER

Ashley and Aleven
(1997) CATO

CBR Derivational
Veloso and Carbonell (1993)
PRODIGY / ANALOGY

Learning Various
Abstraction-Level Cases
Bergmann and Wilke (1996)
PARIS

User-Assisted Planning
Avesani, Perini, and Ricci
(2000) CHARADE

CBR Transformational
Hammond (1989) CHEF

PRIAR (Kambhampati and
Hendler 1992)

SPA (Hanks and Weld 1995)

Leake, Kinley, and Wilson
(1996) (see also multistrategy)

CBR Derivational
Ihrig and Kamb-
hampati (1996)
[UCPOP]

With EBL
Ihrig and Kamb-
hampati (1997)
[UCPOP]

Kakuta et al. (1997)

Table 3A. Analytic Learning Applications and Studies.
Studies in heavily shaded blocks concern planners applied to problems beyond classical planning. Implemented system and pro-
gram names appear in all caps, and underlying planners and learning subsystems appear in small caps but enclosed in brackets. 
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Planning Applications

Inductive Learning General Applications
State Space

(Conjunctive / Disjunctive)
Plan Space Compilation

(CSP / SAT / IP)

Learning Operators for Real-
World Robotics, Clustering
Schmill, Oates, and Cohen
(2000) [TBA for inducing
decision tree]

Propositional
Decision Trees

Concept Learning
Hunt, Marin, and Stone (1966)
CLS

General DT Learning

Quinlan (1986) ID3

Quinlan (1993) C4.5

Khardon (1999) L2ACT

Cohen and Singer (1999)
SLIPPER

Real-Valued
Neural Network

Hinton (1989)

Symbolic Rules from NN
Craven and Shavlik (1993)

Reflex/Reactive
Pomerleau (1993) ALVINN

First-Order Logic

Inductive Logic

Programming (ILP)

Hornlike Clauses
Quinlan (1990) FOIL

Muggleton and Feng (1990)
GOLEM

Lavrac, Dzeroski, and Grobel-
nik (1991) LINUS

Leckie and Zukerman (1998)
GRASSHOPPER [PRODIGY]

Zelle and Mooney (1993) (See
also multistrategy)

Reddy and Tadepalli (1999)
ExEL

Estlin and Mooney
(1996) (See also
multistrategy)

Huang, Selman, and
Kautz (2000) (See also
multistrategy)

Bayesian Learning Train Bayesian Belief Networks,
Unobserved Variables
Dempster, Laird, and Rubin
(1977) EM

Text Classification
Lang (1995) NEWSWEEDER

Predict Run Time of Problem
Solvers for Decision-Theoretic
Control
Horvitz et al. (2001)

Other Inductive
Learning

Action Strategies and Rivest’s
Decision List Learning
Khardon (1999)

Martin and Geffner (2000)

Plan Rewriting

(2000) PBR

Reinforcement

Learning (RL)

Sutton (1988) TD / TDLAMBDA

Watkins (1989) Q Learning

Barto, Bradtke, and Singh
(1995)

Real-Time Dynamic
Programming

Dearden, Friedman, and
Russel (1998) Bayesian Q
Learning

(Dietterich and Flann 1995)
(See also multistrategy)

Incremental Dynamic
Programming
Sutton (1991) DYNA

Planning with learned operators:

Garcia-Martinez and Borrajo
(2000) LOPE

Ambite, Knoblock, and Minton

Table 3B. Inductive Learning Applications and Studies.
CSP = constraint-satisfaction programming. DT = decision tree. IP = integer linear programming. NN = neural network. SAT = satis-
fiability. Studies in heavily shaded blocks feature planners applied to problems beyond classical planning. Implemented system and
program names appear in all caps, and underlying planners and learning subsystems appear in small caps but enclosed in brackets. 
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Planning ApplicationsMultistrategy
Learning General Applications

State Space
Conjunctive/Disjunctive

Plan Space Compilation
[ CSP / SAT/ IP ]

Learn / Refine Operators
Carbonell and Gil (1990),
Gil (1994) EXPO
[PRODIGY]

Wang (1996a, (1996b)
OBSERVER [PRODIGY]

McCluskey, Richardson,
and Simpson (2002)
OPMAKER

EBL and Induction:
Calistri-Yeh, Segre, Sturgill
(1996) ALPS

Analytic and
Inductive

Symbolic Integration
Mitchell, Keller, and Kedar-Cabelli
(1986) LEX-2

Learn CSP Variable Ordering
Zweban et al. (1992) GERRY

Incorporate Symbolic Knowledge
in Neural Networks
Shavlik and Towell (1989) KBANN

Fu (1989)

Learn Horn Clause Sets
Focused by Domain Theory
Pazzani, Brunk, and Silverstein
(1991) FOCL

Refining Domain Theories
Using Empirical Data
Ourston and Mooney (1994)
EITHER

Neural Networks and Fuzzy
Logic to Implement Analogy
Hollatz (1999)

Genetic, Lazy RL,
k-Nearest Neighbor
Sheppard and Salzberg  (1995)

CBR and Induction
Leake, Kinley, and Wilson
(1996) DIAL

Borrajo and Veloso (1997)
HAMLET [PRODIGY]

Zimmerman and
Kambhampati (1999, 2002)
EGBG,  PEGG [GRAPHPLAN]

Deduction, Induction,
and Genetic
Aler, Borrajo, and Isasi
(1998) HAMLET-EvoCK
[PRODIGY]

Aler and Borrajo (2002)
HAMLET-EvoCK
[PRODIGY]

Explanation-Based
Learning and
Neural Networks

Domain Theory Cast in Neural
Network Form
Mitchell and Thrun (1995) EBNN

Explanation-Based
Learning and
Inductive Logic
Programming

Search Control for Logic Programs
Cohen (1990) AxA-EBL

Zelle and Mooney (1993)
DOLPHIN [FOIL/PRODIGY]

Zelle and Mooney (1993)
DOLPHIN [PRODIGY/FOIL]

Estlin and Mooney
(1996) SCOPE
[FOIL]

EBL, ILP, and Some
Static Analysis
Huang, Selman, and
Kautz (2000)
[BLACKBOX-FOIL]

Explanation-Based
Learning and
Reinforcement
Learning

Dietterich and Flann (1997)
EBRL Policies

Table 3C. Multistrategy Learning Applications and Studies.
CSP = constraint-satisfaction programming. DT = decision tree. EBL = explanation-based learning. IP = integer linear programming. NN =
neural network. RL = reinforcement learning. SAT: satisfiability. Studies in the heavily shaded blocks feature planners applied to problems
beyond classical planning. Implemented system and program names appear in all caps, and underlying planners and learning subsystems
appear in small caps but enclosed in brackets.

studies and implementations of the learning
technique in the first column. These General
Applications were deemed particularly rele-
vant to planning, and of course, the list is
highly abridged. Comparing the General Ap-

The table rows feature the major learning
types outlined in tables 1 and 2, occasionally
further subdivided as indicated in the leftmost
column. The second column contains a listing
of some of the more important nonplanning



plications column with the Planning columns
for each table provides a sense of which ma-
chine learning methods have been applied
within the planning community. The three
columns making up the Planning Applications
partition subdivide the applications into state
space; plan space; and CSP, SAT, and IP plan-
ning. Studies dealing with planning problems
beyond classical planning (as defined in Plan-
ning Problem Type earlier) appear in shaded
blocks in these tables.

Table 3C, covering multistrategy learning,
reflects the fact that the particular combina-
tion of techniques used in some studies could
not always be easily subcategorized relative to
the analytic and inductive approaches of tables
3A and 3B. This is often the case, for example,
with an inductive learning implementation
that exploits the design of a particular plan-
ning system. Examples include HAMLET (Borrajo
and Veloso 1997), which exploits the search
tree produced by the PRODIGY 4.0 planning sys-
tem to lazily learn search control heuristics,
and EGBG and PEGG (Zimmerman and Kamb-
hampati 2002, 1999), which exploit GRAPH-
PLAN’s use of the planning graph structure to
learn to shortcut the iterative search episodes.
Studies such as these appear in table 3c under
the broader category, analytic and inductive.

In addition to classifying the studies sur-
veyed along the learning-type and planning-
type dimensions, these tables illustrate several
foci of this corpus of work. For example, the
preponderance of research in analytic learning
as it applies to planning rather than inductive
learning styles is apparent, as is the heavy
weighting in the area of state-space planning.
We return to such issues when discussing im-
plications for future research in the final sec-
tion.

Survey Tables Based on 
All Five Dimensions
The same studies appearing in tables 3A, 3B,
and 3C are tabulated in tables 4A and 4B ac-
cording to all five dimensions in figure 1. We
have used a block structure within the tables to
emphasize shared attribute values wherever
possible, given the left-to-right ordering of the
dimensions. Here, the two dimensions not rep-
resented in the previous set of tables, “Plan-
ning-Learning Goal” and “Learning Phase,” are
ordered first, so this block structure reveals the
most about the distribution of work across at-
tributes in these dimensions. It’s apparent that
the major focus of learning-in-planning work
has been on speedup, with much less attention
given to the aspects of learning to improve
plan quality or building and improving the do-

main theory. Also obvious is the extent to
which research has focused on learning prior
to or during planning, with scant attention
paid to learning during plan execution.

Graphic Analysis of Survey
There are obvious limitations to what can read-
ily be gleaned from any tabular presentation of
a data set across more than two or three dimen-
sions. To more easily visualize patterns and re-
lationships in learning-in-planning work, we
have devised a graphic method of depicting
the corpus of work in this survey with respect
to the five dimensions given in figure 1. Figure
2 illustrates this method of depiction by map-
ping two studies from the survey onto a ver-
sion of figure 1.

In this manner, every study or project cov-
ered in the survey has been mapped onto at
least one 5-node, directed subgraph of figure 3
(classical planning systems) or figure 4 (sys-
tems designed to handle problems beyond the
classical paradigm). The edges express which
combinations of the figure 1 dimensional at-
tributes were actually realized in a system cov-
ered by the survey.

Besides providing a visual characterization
of the corpus of research in learning in plan-
ning, this graphic presentation mode permits
quick identification of all planner-learning sys-
tem configurations that embody any of the as-
pects of the five dimensions (nodes). For exam-
ple, because the survey tables don’t show all
possible values in each dimension’s range, as-
pects of learning in planning that have re-
ceived scant attention are not obvious until
one glances at the graphs, which entails simply
observing the edges incident on any given
node. Admittedly, a disadvantage of this pre-
sentation mode is that the specific planning
system associated with a given subgraph can-
not be extracted from the figure alone. Howev-
er, the tables can assist in this regard.

Learning within the Classical Planning
Framework Figure 3 indicates with dashed
lines and fading those aspects (nodes) of the
five dimensions of learning in planning that
are not relevant to classical planning. Specifi-
cally, Learning or Improving the Domain The-
ory is inconsistent with the classical planning
assumption of a complete and correct domain
theory. Similarly, the strength of reinforcement
learning lies in its ability to handle stochastic
environments in which the domain theory is
either unknown or incomplete. (Dynamic pro-
gramming, a close cousin to reinforcement
learning methods, requires a complete and per-
fect domain theory, but because of efficiency
considerations, it has remained primarily of

Articles

SUMMER 2003    83



Articles

84 AI MAGAZINE

Dimensions

Planning/
Learning Goal

Learning Phase Type of Learning Planning
Approach

Planning Systems / Studies

Plan space Smith and Peot (1993) [SNLP]

Gerevini and Schubert (1996) [UCPOP]

Analytic

Static analysis

.

.

State space

Etzioni (1993) STATIC [PRODIGY]

Dawson and Siklossy (1977) REFLECT

Nebel, Koehler, and Dimopoulos (1997) RIFO

Fox and Long (1998, 1999), Rintanen (2000)
STAN / TIM [GrRAPHPLAN]

.

.

Before planning
starts

.

.

.

.
Static analysis:

Learn abstractions

.

.

Sacerdoti (1974) ABSTRIPS

Knoblock (1990) ALPINE [PRODIGY]

Before and during
planning

Static analysis and
EBL

. Perez and Etzioni (1992) DYNAMIC
[PRODIGY]

.

.

State space

.

.

Fikes and Nilsson (1972) STRIPS

Minton (1989) PRODIGY/EBL

Gratch and DeJong (1992) COMPOSER
[PRODIGY]

Bhatnagar (1994) FAILSAFE

Kambhampati (2000) GRAPHPLAN-EBL

Plan space Chein (1989)

Kambhampati, Katukam, and Qu (1996)
UCPOP-EBL

(Compilation)

SAT

Nogood Learning
Kautz and Selman (1999) BLACKBOX

LP & SAT Wolfman and Weld (1999) LPSAT [RELSAT]

Analytic

.

.

.

EBL

.

.

.

.

.

CSP Nogood Learning
Do and Kambhampati (2001) GP-CSP
[GRAPHPLAN]

.

.

.

State space

.

.

.

.

.

Learning Various Abstraction-Level Cases
Bergmann and Wilke (1996) PARIS

User Assist Planning
Avesani, Perini, and Ricci (2000) CHARADE

Transformational Analogy / Adaptation
Hammond (1989) CHEF

Kambhampati and Hendler (1992) PRIAR

Hanks and Weld (1995) SPA

Leake, Kinley, and Wilson (1996) DIAL

Derivational Analogy / Adaptation
Veloso and Carbonell (1993) PRODIGY /
ANALOGY

.

.

.

.

.

.

.

.

.

.

.

Speedup

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

During planning

.

.

.

.

.

.

.

.

.

.

.

.

Analytic

Analogical

Case-Based
Reasoning

Plan space Ihrig and Kambhampati (1996) [UCPOP]

With EBL
Ihrig and Kambhampati (1997) [UCPOP]

Table 4A. Survey Studies Mapped across All Five Dimensions, Part 1.
CSP = constraint-satisfaction programming. EBL = explanation-based learning. LP = linear programming. SAT = satisfiability. Stud-
ies in heavily shaded blocks feature planners applied to problems beyond classical planning. Implemented system and program
names appear in all caps, and underlying planners and learning subsystems appear in small caps but enclosed in brackets.
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Dimensions

Planning /
Learning Goal Learning Phase Type of Learning Planning

Approach

Planning Systems / Studies

Inductive:

Inductive logic
programming (ILP)

.

State space

Leckie and Zuckerman (1998)
GRASSHOPPER [PRODIGY]

Reddy and Tadepalli (1999) ExEL

Other induction

.

.

.

Action Strategies and Rivest’s
Decision List Learning of Policies
Khardon (1999)
Martin and Geffner (2000)

Calistri-Yeh, Segre, and Sturgill (1996)
ALPS

CBR and Induction
Leake, Kinley, and Wilson (1996) DIAL

.

.

.

.

.

.

During planning

.

.

.

Multistrategy

Analytic and
inductive

.

.

State space

.

.
Zimmerman and Kambhampati (1999)
EGBG [Graphplan]

Before and
during planning

EBL, ILP,
and static analysis

(Compilation)

SAT

Huang, Selman, and Kautz (2000)
[BLACKBOX/FOIL]

State space

Zelle and Mooney (1993) DOLPHIN
[PRODIGY/FOIL]

.

.

.

.

.

.

.

.

.

Speedup

.

.

.

.

.

.

.

.

.

.

.

.

EBL and ILP
Plan space Estlin and Mooney (1996) SCOPE [FOIL]

EBL and

inductive

.

.

.

State space

.

Borrajo and Veloso (1997) HAMLET
[PRODIGY]

Deductive-Inductive and Genetic
HAMLET-EvoCK (PRODIGY) (Aler and
Borrajo 1998, 2002)

Zimmerman and Kambhampati (2002)
PEGG [GRAPHPLAN]

Speedup

and

improve plan
quality

.

.

During planning

.

.

.

.
Inductive

(Analysis of plan
differences)

.

.

Plan Rewriting
Ambite, Knoblock, and Minton (2000) PbR

Before planning
starts

(Propositional)

decision trees

.

State space

Learning Operators for Real World Robotics,
Clustering
Schmill, Oates, and Cohen (2000) TBA for
inducing decision tree

Analytic:

EBL

.

.

Permissive Real-World Plans
Bennett and DeJong (1996) GRASPER

Learn or improve
domain theory

During plan
execution

Multistrategy:

Analytic and
inductive

.

.

.

Learning / Refining Operators
Wang (1996a, 1996b) OBSERVER
[PRODIGY]

McClusky, Richardson, and Simpson
(2002) OPMAKER

Carbonell and Gil (1990); Gil (1994) EXPO
[PRODIGY]

EBL and RL State space EBRL Dietterich and Flann (1997)Learn or improve
domain theory

and

improve plan
quality

.

.

During planning

.

.

Inductive:

Reinforcement

learning

.

.

.

Incremental Dynamic Programming
Sutton (1991) DYNA

Planning with Learned Operators
Garcia-Martinez and Borrajo (2000) LOPE

Table 4B. Survey Studies Mapped across All Five Dimensions, Part 2.
EBL = explanation-based learning. ILP = inductive logic programming. RL = reinforcement learning. SAT = satisfiability. Studies
in heavily shaded blocks feature planners applied to problems beyond classical planning. Implemented system and program
names appear in small caps, and underlying planners and learning subsystems appear in small caps but enclosed in brackets.



ning. Not surprisingly, learning in the third
phase, during plan execution, is not a focus for
classical planning scenarios because this mode
has clear affinity with improving a faulty do-
main theory—a nonclassical problem.

It is apparent, based on the figure 3 graph in
combination with the survey tables, that ex-
planation-based learning (EBL) has been exten-
sively studied and applied to every planning
approach and both relevant planning-learning
goals. This is perhaps not surprising given that
planning presumes the sort of domain theory
that EBL can readily exploit. Perhaps more no-

theoretical interest with respect to classical
planning.)

Broadly, the figure indicates that some form
of learning has been implemented with all
planning approaches. If we consider the Learn-
ing Phase dimension of figure 3, it is obvious
that the vast majority of the work to date has
focused on learning conducted during the
planning process. Work in automatic extrac-
tion of domain-specific knowledge through
analysis of the domain theory (Fox and Long
1999, 1998; Gerevini and Schubert 1998) con-
stitutes the learning conducted before plan-
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SAT

CSP 

LP  

Plan Space Search

State Space Search
[Conjunctive / 

Disjunctive]
Classical Planning
 � Static world
 � Deterministic
 � Fully observable
 � Instantaneous 
     Actions
 � Propositional

Full-Scope Planning
 � Dynamic world
 � Stochastic
 � Partially observable
� Durative actions
 � Asynchronous Goals
  � Metric/Continuous

Compilation
Approaches

Explanation-Based
Learning

Decision Tree

Inductive Logic
Programming

Neural Network

Bayesian Learning

Other Induction

Analytic and Induction

EBL and Inductive
Logic Programming

EBL and Reinforce-
ment Learning

Multistrategy

Inductive

Analytic

Static Analysis
and Abstractions

Reinforcement
Learning

Before Planning
Starts 

During Planning
Process

During Plan
Execution

Learning AspectsPlanning Aspects

Problem
Type

Planning 
Approach

Planning-
Learning

Goal

Learning Phase
Type of Learning

Learn
or Improve

Domain
Theory

Improve
Plan

Quality

Speed
Up

Planning

Beyond Classical 
Modes

Analogic

Derivational Analogy
/ Case-Based

Figure 2. Example Graphic Mapping of Two Learning-in-Planning Systems.
EBL = explanation-based learning. ILP = inductive logic programming. The layout of the five dimensions in figure 1 and their range of values
can be used to map the research work covered in the survey tables. By way of example, the PRODIGY-EBL system (Minton et al. 1989) is rep-
resented by the top connected series of gray lines; it’s a classical planning system that conducts state-space search, and it aims to speed up
planning using explanation-based learning (EBL) during the planning process. Tracing the subgraph from the left, the edge picks up the
line thickness at the State-Space node and the gray shade of the Speed-Up Planning node. The SCOPE system (Estlin and Mooney 1996) is
then represented as the branched series of thicker (2 pt)  lines. SCOPE is a classical planning system that conducts plan-space search, and the
goal of its learning subsystem is to both speed up planning and improve plan quality. Thus, the Plan-Space node branches to both Planning-
Learning Goal nodes. All SCOPE’s learning occurs during the planning process, using both EBL and inductive logic programming (ILP). As
such, the edges converge at the during planning process node, but both edges persist to connect with the EBL and ILP node.



table is the scant attention paid to inductive
learning techniques for classical planners. Al-
though ILP has extensively been applied as a
learning tool for planners, other inductive
techniques such as decision tree learning,
neural networks, and Bayesian learning, have
seen few planning applications.

Learning within a Nonclassical Planning
Framework Figure 4 covers planning systems
designed to learn in the wide range of problem
classes beyond the classical formulation
(shown in shaded blocks in tables 3A, 3B, and
3C and 4A and 4B). There are, as yet, far fewer
such learning-augmented systems, although
this area of planning community interest is
growing. Those “beyond classical planning”
systems that exist extend the classical planning
problem in a variety of different ways, but be-
cause of space considerations, we have not re-
flected these variations with separate versions

of figure 4 for each combination. Learning in a
dynamic, stochastic world is the natural do-
main of reinforcement learning systems, and
as discussed earlier, this popular machine
learning field does not so readily fit our five-di-
mensional learning-in-planning perspective.
Figure 4 therefore represents reinforcement
learning in a different manner than the other
approaches; a single shade, brick crosshatch set
of edges is used to span the five dimensions.
The great majority of reinforcement learning
systems to date adopt a state-space perspective,
so there is an edge skirting this node. With re-
spect to the planning-learning goal dimension,
reinforcement learning can be viewed as both
“improving plan quality” (the process moves
toward the optimal policy) and “learning the
domain theory” (it begins without a model of
transition probability between states). This
view is reflected in figure 4 as the vertical rein-
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SAT

CSP 

LP  

Plan Space Search

State Space Search
[Conjunctive / 

Disjunctive]
Classical Planning
 � Static world
 � Deterministic
 � Fully observable
 � Instantaneous 
     Actions
 � Propositional

Full-Scope Planning
 � Dynamic world
 � Stochastic
 � Partially observable
� Durative actions
 � Asynchronous Goals
  � Metric/Continuous

Compilation
Approaches

Explanation-Based
Learning

Case-Based Reasoning
(Derivational/Trans-

formational Analogy)

Decision Tree

Inductive Logic
Programming

Neural Network

Bayesian Learning

Other Induction

Analytic and Induction

EBL and Inductive
Logic Programming

EBL and Reinforce-
ment Learning

Multistrategy

Inductive

Analytic

Static Analysis
and Abstractions

Reinforcement
Learning

Before Planning
Starts 

During Planning
Process

During Plan
Execution

Learning AspectsPlanning Aspects

Problem
Type

Planning 
Approach

Planning-
Learning

Goal

Learning Phase
Type of Learning

Learn
or Improve

Domain
Theory

Improve
Plan

Quality

Speed
Up

Planning

Beyond Classical 
Modes

Analogic

Figure 3. Mapping of the Survey Planning-Learning Systems for Classical 
Planning Problems on the Figure 1 Characterization Structure.



Where to for Learning in 
Automated Planning?

We organize this discussion of promising direc-
tions for future work in this field along two
broad partitions: (1) apparent gaps in the cor-
pus of learning-in-planning research as sug-
gested by the survey tables and figures of this
report and (2) recent advances in planning that
suggest a role for learning notably beyond the
modes investigated by existing studies.

Research Gaps Suggested 
by the Survey
There are significant biases apparent in the fo-
cus and distribution of the survey studies rela-
tive to the five dimensions we have defined. To
an extent, these biases are to be expected be-
cause some configurations of planning-learn-
ing methods are intrinsically infeasible or
poorly matched (for example, learning domain
theory in a classical planning context or com-

forcement learning edge spanning these nodes
under the planning-learning goal dimension.
Finally, because reinforcement learning is both
rooted in interacting with its environment and
takes place during the process of building the
plan, there is a vertical edge spanning these
nodes under the learning-phase dimension.

Beyond reinforcement learning systems, fig-
ure 4 suggests at least three aspects to the learn-
ing-in-planning work done to date for nonclas-
sical planning problems, all fielded systems
plan using state-space search, most systems
conduct learning during the plan execution
phase, and EBL is again the learning method of
choice. It is also notable that the only decision
tree learning conducted in any planner is based
in a nonclassical planning system.

With this overview of where we have been
with learning in planning, we next turn our at-
tention to open issues and research directions
that beckon.
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Improve
Plan

Quality 

Learn or
Improve
Domain
Theory  

Explanation-Based
Learning

Case Based Reasoning

Decision Tree

Inductive Logic
Programming

Neural Network

Bayesian Learning

Reinforcement Learning

Analytic and Induction

EBL and Inductive
Logic Programming

EBL and Reinforce-
ment Learning

Multistrategy

Inductive

Analytic

Static Analysis
and Abstractions

Before Planning
Starts 

During Planning
Process

During Plan
Execution

Speed
up

planning

SAT

CSP 

L P 

Plan Space Search

State Space Search
[Conjunctive / 

Disjunctive]

Compilation
Approaches

Classical Planning
 � Static world
 � Deterministic
 � Fully observable
 � …

Full-Scope Planning
 � Dynamic world
 � Stochastic
 � Partially observable
 � Durative Actions
 � Asynchronous Goals
 � Metric/Continuous

Problem Type Planning 
Approach

Planning-
Learning

Goal

Learning 
Phase

Type of Learning

Learning AspectsPlanning Aspects

Beyond Classical
Planning
 � Dynamic world
 � Stochastic
 � …

Figure 4. Mapping of the Survey Planning-Learning Systems for 
Beyond-Classical Planning Problems on the Figure 1 Characterization Structure.



bining reinforcement learning with SAT, which
does not capture the concept of a state). In as-
sessing the survey tables here, however, we
seek learning-in-planning configurations that
are feasible, have been largely ignored, and ap-
pear to hold promise.

Nonanalytic Learning Techniques    The
survey tables suggest a considerable bias to-
ward analytic learning in planning, which de-
serves to be questioned. Why is analytic learn-
ing so favored? In a sense, a planner using EBL
is learning guaranteed knowledge, control infor-
mation that is provably correct. However, it is
well known within the machine learning com-
munity that approximately correct knowledge
can be at least as useful, particularly if we’re
careful not to sacrifice completeness. Given the
presence of a high-level domain theory, it is
reasonable to exploit it to learn. However, large
constraints are placed on just what can be
learned if the planner doesn’t also take advan-
tage of the full planning search experience.
The tables and figures of this study indicate the
extent to which ILP has been used in this spirit
together with EBL. This is a logical marriage of
two mature methodologies; ILP in particular
has powerful engines for inducing logical ex-
pressions, such as FOIL (Quinlan 1990), that can
readily be employed. It is curious to note, how-
ever, that decision tree learning has been used
in only one study in this entire survey, yet this
inductive technique is at least as mature and
features its own very effective engines such as
ID3 and C4.5 (Quinlan 1993, 1986). In the
1980s, decision tree algorithms were generally
not considered expressive enough to capture
complex target concepts (such as under what
conditions to apply an operator). However, giv-
en subsequent evolutions in both decision tree
methods and the current opportunities for
learning to assist the latest generation of plan-
ners, the potential of decision tree learning in
planning merits reconsideration.

Learning across Problems    A learning as-
pect that has largely fallen out of favor in re-
cent years is the compilation and retention of
search guidance that can be used across differ-
ent problems and perhaps even different do-
mains. One of the earliest implementations of
this took the form of learning search control
rules (for example, using EBL). There might be
two culprits that led to disenchantment with
learning this interproblem search control:

First is the utility problem that can surface
when too many, or relatively ineffective rules
are learned.

Second is the propositionalization of the plan-
ning problem, wherein lifted representations
of the domain theory were forsaken for the
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faster processing of grounded versions involv-
ing only propositions. The cost of rule check-
ing and matching in more recent systems that
use grounded operators is much lower than for
planning systems that handle uninstantiated
variables.

Not conceding these hurdles to be insur-
mountable, we suggest the following research
approaches:

One trade-off associated with a move to
planning with grounded operators is the loss of
generality in the basic precepts that are most
readily learned. For example, GRAPHPLAN can
learn a great number of “no goods” during
search on a given problem, but in their basic
form, they are only relevant to the given prob-
lem. GRAPHPLAN retains no interproblem mem-
ory. It is worth considering what might consti-
tute effective interproblem learning for such a
system.

The rule utility issue faced by analytic learn-
ing systems (and possibly all systems that learn
search control rules) can be viewed as the prob-
lem of incurring the cost of a large set of sound,
exact, and probably overspecific rules. Learn-
ing systems that can reasonably relax the
soundness criterion for learned rules can move
broadly toward a problem goal using generally
correct search control. Some of the multistrat-
egy studies reflected in table 3C are relevant to
this view to the extent that they attempt to
leverage the strengths of both analytic and in-
ductive learning techniques to acquire more
useful rules. Initial work with an approach that
does not directly depend on a large set of train-
ing examples was reported in Kambhampati
(1999). Here, a system is described that seeks to
learn approximately correct rules by relaxing
the constraint of the UCPOP-EBL system that re-
quires regressed failure explanations from all
branches of a search subtree before a search
control rule is constructed.

Perhaps the most ambitious approach to
learning across problems would be to extend
some of the work being done in analogical rea-
soning elsewhere in AI to the planning field.
The goal is to exploit any similarity between
problems to speed up solution finding. Current
case-based reasoning implementations in plan-
ning are capable of recognizing a narrow range
of similarities between an archived partial plan
and the current state the planner is working
from. Such systems cannot apply knowledge
learned in one logistics domain, for example,
to another system—even though a human
would find it natural to use what he/she has
learned in solving an AIPS planning competi-
tion driver log problem to a depot problem. We
note that transproblem learning has been ap-



proached from a somewhat different direction
in Fox and Long (1999) using a process of iden-
tifying abstract types during domain prepro-
cessing.

Extending Learning to Nonclassical
Planning Problems    The preponderance of
planning research has been based in classical
planning, as is borne out by the survey tables
and figures. Historically, this weighting arose
because of the need to study a less daunting
problem than full-scope planning, and much
of the progress realized in classical planning
has indeed provided the foundation for ad-
vances now being made in nonclassical formu-
lations. It is a reasonable expectation that the
body of work in learning methods adapted to
classical planning will similarly be modified
and extended to nonclassical planning sys-
tems. With the notable exception of reinforce-
ment learning, the surface has scarcely been
scratched in this regard.

If, as we suggest in the introduction, the re-
cent striking advances in speed for state-of-the-
art planning systems lies behind the relative
paucity of current research in speedup learn-
ing, the focus might soon shift back in this di-
rection. These systems, impressive though they
are, demonstrated their speedup abilities in
classical planning domains. As the research at-
tention shifts to problems beyond the classical
paradigm, the greatly increased difficulty of
the problems themselves seems likely to renew
planning community interest in speed-up
learning approaches.

New Avenues for Learning in 
Planning Motivated by Recent 
Developments in Planning
Recent advances in planning research suggest
several aspects of the new generation of plan-
ners for which machine learning methods
might provide important enhancements. We
discuss here three such avenues for learning in
planning: (1) offline learning of domain
knowledge, (2) learning to improve heuristics,
and (3) learning to improve plan quality.

Offline Learning of Domain Knowledge
We have previously noted the high overhead
cost of conducting learning online during the
course of solving a single problem, relative to
often-short solution times for the current gen-
eration of fast and efficient planners. This
handicap might help explain more recent in-
terest in offline learning, such as domain
analysis, which can be reused to advantage
over a series of problems within a given do-
main. The survey results and figure 3 also sug-
gest an area of investigation that has so far
been neglected in studies focused on nonclas-
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Reinforcement
Learning 

The Special Case

In the context of the figure 1 dimensions for a learning-in-
planning system, reinforcement learning must be seen as a
special case. Unlike the other learning types, this widely
studied machine learning field is not readily characterized as
a learning technique for augmenting a planning system. Es-
sentially, it’s a toss up whether to view reinforcement learn-
ing as a learning system that contains a planning subsystem
with a learning component. Reinforcement learning is de-
fined more clearly by characterizing a learning problem in-
stead of a learning technique.

A general reinforcement learning problem can be seen as
composed of just three elements: (1) goals an agent must
achieve, (2) an observable environment, and (3) actions an
agent can take to affect the environment (Sutton and Barto
1998). Through trial-and-error online visitation of states in
its environment, such a reinforcement learning system seeks
to find an optimal policy for achieving the problem goals.
When reinforcement learning is applied to a planning prob-
lem, a fourth element, the presence of a domain theory,
comes into play. The explicit model of the valid operators is
used to direct the exploration of the state space, and this
space is used (together with the reward associated with each
state), in turn, to refine the domain theory. Because, in prin-
ciple, the “exact domain theory” is never acquired, reinforce-
ment learning has been termed a “lifelong learning process.”
This aspect stands in sharp contrast to the assumption in
classical planning that the planner is provided a complete
and perfect domain theory.

Because of the tightly integrated nature of the planning
and learning aspects of reinforcement learning, the five-di-
mensional view of figure 1 is not as useful for characterizing
implemented reinforcement learning-planning systems as it
is for other learning-augmented planners. Nonetheless,
when we analyze the survey results in the next section, we
will map planning-oriented reinforcement learning work on-
to this dimensional structure for purposes of comparison
with the other nine learning techniques that have been (or
could be) used to augment planning systems.



sical planning—the learning of domain invari-
ants before planning starts. This static analysis
has been shown to be an effective speedup ap-
proach for many classical planning domains,
and there is no reason to believe it cannot sim-
ilarly boost nonclassical planning.

On another front, there has been much en-
thusiasm in parts of the planning community
for applying domain-specific knowledge to
speed up a given planner (for example, TL PLAN

[Bacchus and Kabanza 2000] and BLACKBOX

[Kautz and Selman 1998]). This advantage has
also been realized in hierarchical task network
(HTN) planning systems by supplying domain-
specific task-reduction schemas to the planner
(SHOP [Nau et al. 1999]). Such leveraging of
user-supplied domain knowledge has been
shown to greatly decrease planning time for a
variety of domains and problems. One draw-
back of this approach is the burden it places on
the user to correctly hand code the domain
knowledge ahead of time and in a form usable
by the particular planner. Offline learning
techniques might be exploited here. If the user
provides very high-level domain knowledge in
a format readily understandable by humans,
the system could learn in supervised fashion to
operationalize this background knowledge to
the particular formal representation usable by
a given target planning system. If the user is
not to be burdened with learning the planner’s
low-level language for knowledge representa-
tion, this approach might entail solving sam-
ple problems iteratively with combinations of
these domain rules to determine both correct-
ness and efficacy.

An interesting related issue is the question of
which types of knowledge are easiest and hard-
est to learn, which has a direct impact on the
types of knowledge that might actually be
worth learning. The closely related machine
learning aspect of sample complexity addresses
the number and type of examples that are
needed to induce a given concept or target
function. To date, the relative difficulty of
learning tasks has received little attention with
respect to the domain-specific knowledge used
by some planners. What are the differences in
terms of the sample complexity of learning dif-
ferent types of domain-specific control knowl-
edge? For example, it would be worth catego-
rizing the TL PLAN control rules versus the
SHOP/HTN–style schemas in terms of their sam-
ple complexity.

Learning to Improve Heuristics    The
credit for both the revival of plan-space plan-
ning and the impressive performance of most
state-space planners in recent years goes largely
to the development of heuristics that guide the

planner at key decision points in its search. As
such, considerable research effort is focusing
on finding more effective domain-indepen-
dent heuristics and tuning heuristics to partic-
ular problems and domains. The role that
learning might play in acquiring or refining
such heuristics has largely been unexplored. In
particular, learning such heuristics inductively
during the planning process would seem to
hold promise. Generally, the heuristic values
are calculated by a linear combination of
weighted terms where the designer chooses
both the terms and their weights in hopes of
obtaining an equation that will be robust
across a variety of problems and domains. The
search trace (states visited) resulting from a
problem-solving episode could provide the
negative and positive examples needed to train
a neural network or learn a decision tree. Pos-
sible target functions for inductively learning
or improving heuristics include term weights
that are most likely to lead to higher-quality
solutions for a given domain, term weights
that will be most robust across many domains,
attributes that are most useful for classifying
states, exceptions to an existing heuristic such
as used in LRTA* (Korf 1990), and a metalevel
function that selects or modifies a search
heuristic based on the problem or domain.

Multistrategy learning might also play a role
in that the user might provide background
knowledge in the form of the base heuristic.

The ever-growing cadre of planning ap-
proaches and learning tools, each with their
own strengths and weaknesses, suggests an-
other inviting direction for speedup learning.
Learning a rule set or heuristic that will direct
the application of the most effective approach
(or multiple approaches) for a given problem
could lead to a metaplanning system with ca-
pabilities well beyond any individual planner.
Interesting steps in this direction have been
taken by Horvitz et al. (2001) using the con-
struction and use of Bayesian models to predict
the run time of various problem solvers.

Learning to Improve Plan Quality    The
survey tables and figures suggest that the issue
of improving plan quality using learning has
received much less attention in the planning
community than speedup learning. However,
because planning systems are ported into real-
world applications, this concern is likely to be
a primary one. Many planning systems that
successfully advance into the marketplace will
need to interact frequently with human users
in ways that have received scant attention in
the lab. Such users are likely to have individual
biases with respect to plan quality that they
can be hard pressed to quantify. These plan-
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might be that the best way to tailor an interac-
tive planner will be in the manner of the pro-
gramming-by-demonstration systems that
have recently received attention in the ma-
chine learning community (Lau, Domingos,
and Weld 2000). Such a system implemented
on top of a planner might entail having the
user create plans for several problems that the
learning system would then parse to learn plan
aspects peculiar to the particular user.

Summary and Conclusion
We have presented the results of an extensive
survey of research conducted and published
since the first application of learning to auto-
mated planning was implemented some 30
years ago. In addition to compiling categorized
tables of the corpus of work, we have presented
a five-dimensional characterization of learning
in planning and mapped the studies onto it.
This process has clarified the foci of the work in
this area and suggested a number of avenues
along which the community might reasonably
proceed in the future. It is apparent that auto-
mated planning and machine learning are
well-matched methodologies in a variety of
configurations, and we suggest there are a
number of these approaches that merit more
research attention than they have received to
date. We have expanded on several of these
possibilities and offered our conjectures about
where the more interesting work might lie.
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