
■ We examine different formalisms for modeling
qualitatively physical systems and their associated
inferential processes that allow us to derive quali-
tative predictions from the models. We highlight
the mathematical aspects of these processes along
with their potential and limitations. The article
then bridges to quantitative modeling, highlight-
ing the benefits of qualitative reasoning–based ap-
proaches in the framework of system identifica-
tion, and discusses open research issues.

Modeling Physical Systems
Qualitatively 

The need to represent physical systems by
models is common to all scientific and
engineering domains. However, the

modeling process encounters difficulties from
both ends: A model must adapt to the knowl-
edge available and the task it is built for. The
possible limitations of traditional numeric
methods with respect to these problems mean
qualitative models can be a good alternative:
(1)  qualitative models cope with uncertain
and incomplete knowledge, (2) a qualitative
model output equals an infinity of numeric
runs that are obtained at once in compact
form, (3) the qualitative predictions provide
the relevant qualitative distinctions in the sys-
tem’s behavior, and (4) the modeling primi-
tives allow for a more intuitive interpretation. 

A system’s evolution can be tackled in dis-
crete terms by defining states and events that
trigger transitions between states. This point of
view is generally the adopted one when con-
tinuous dynamics of behavior are not relevant.
The originality of qualitative reasoning is to
provide an intermediate level between discrete
event and continuous models in which the

state space is discretized into a number of finite
states, and transitions between those states
obey continuity constraints (Dague and
MQ&D 1995; Hayes 1985; Travé-Massuyès,
Dague, and Guerrin 1997).

Let us illustrate these ideas with the well-
known pressure regulator (without friction) ex-
ample (figure 1).

In figure 1, Q is the fluid flow through the
pipe; Pi and Po are the input and output pres-
sure, respectively; V represents the opening or
closing speed of the valve; and F the force that
acts on the piston. If the domains of the vari-
ables are abstracted into a finite number of val-
ues; for example, if we only retain their signs,
the possible behaviors of the pressure regulator
are all captured by the following finite-state au-
tomaton, so-called envisionment in qualitative
reasoning (de Kleer and Brown 1984) (figure 2). 

Every state in figure 2 corresponds to the in-
dicated variables’ qualitative values, and the
arrows represent the transitions between
states. Circled states are instantaneous states,
whereas squared states have a positive dura-
tion. Starting from an initial state, the possible
system’s (qualitative) behaviors are obtained as
a sequence of chronologically ordered states
from the different paths in the automaton. For
example, the sequence [4, 5, 4, 5, 1, 2] repre-
sents a behavior in which F first oscillates be-
tween 0 and positive value (with V negative)
and then becomes negative while V becomes 0. 

Domain abstraction, which abstracts the real
domain value of variables into a finite number
of ordered symbols, is at the core of qualitative
reasoning. Domain abstraction is comple-
mented by functional abstraction, which al-
lows one to state incompletely known func-
tional relationships between quantities. For
example, one might want to say that the flow
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the section entitled Qualitative Simulation are
concerned with the following questions, re-
spectively: How can we compute the qualita-
tive states of a system at a given time point?
This question is answered by dealing with sta-
tic models (traditionally represented by alge-
braic equations), for which resolution tech-
niques have been proposed within different
qualitative formalisms. How can we deal with
temporal evolution and dynamics? This ques-
tion puts the focus on dynamic models (tradi-
tionally represented by ordinary differential
equations [ODEs]), for which behavior predic-
tion calls for qualitative simulation tech-
niques.

The last part of the article shows that some
limitations of qualitative reasoning (Struss
1988) might be reduced significantly by the in-
tegration of such methods with either further
knowledge on the mathematical properties of
the specific system at study or partial quantita-
tive knowledge or more sophisticated mathe-
matics, borrowed, for example, from system
theory. The article also highlights the need for
qualitative reasoning–based approaches in the
framework of quantitative modeling to per-
form quantitative system identification sound-
ly and efficiently. Finally, the article concludes
by discussing some open research issues.

Domain Abstraction 
and the Computation of 

Qualitative States
The central idea of qualitative reasoning is do-
main abstraction: It abstracts the value domain
of continuous variables, which is generally the
real line, into a finite number of ordered sym-
bols representing qualitative values that make
real behavioral distinctions. Domain abstrac-
tion is performed by identifying for each vari-
able a set of distinguished points called land-
marks, noted li, which partition the real line �.

Landmarks can be either numeric or
symbolic because only their ordinal relation-
ship is relevant. The qualitative value of a vari-
able is either a landmark or an open interval
between two adjacent landmarks. The finite,
totally ordered set of all the possible qualitative
values of a variable is called its quantity space.
The quantity space can contain the landmarks
–�, 0, and +�. For example, a natural set of
landmarks for the temperature of water is giv-
en in figure 3. 

It is obviously desirable that the mapping Q
from real numbers to a finite quantity space
verifies some properties. Real operators, op, for
example, arithmetic operators, are qualitative-
ly abstracted into operators Q-op. For example,

through a valve increases with the pressure dif-
ference, without specifying the particular func-
tion. Knowing some of their properties, such as
monotonicity, is often sufficient to constrain
the behavior of the variables. Domain and
functional abstractions are associated with in-
ferential processes, which perform on the
quantities consistently with their numeric
counterpart. They allow us to derive qualitative
predictions of the system’s state and perform
simulation when the system is dynamic. We
highlight the mathematical aspects of these
processes along with their potential and limita-
tions, with particular emphasis on qualitative
simulation.

The section entitled Domain Abstraction
and the Computation of Qualitative States and
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Figure 2. The Pressure Regulator Envisionment. 
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if op is a binary operator, Q-op is usually defined
as a Q-op b = {Q(x op y) | Q(x) = a and Q(y) = b}.
More generally, a set C of real-valued con-
straints involving several operators can similar-
ly be abstracted into a set of qualitative con-
straints Q(C). Let us note Sol(C), the set of all
real solutions of a set of real-valued constraints
C, and Q-Sol(Q-C), the set of all qualitative so-
lutions of a set of qualitative constraints Q-C.
Then we define the two following properties:

First, Q is said to be sound iff Q(Sol(C)) ⊆ Q-
Sol(Q(C)) for any C, which is also equivalent to
�C|Q(C) = Q-CQ(Sol(C)) ⊆ Q-Sol(Q-C) for any Q-C.
It means that qualitative solutions of qualita-
tive abstracted constraints capture the abstrac-
tions of all real solutions of real constraints,
but some qualitative solutions can be spurious;
that is, they do not correspond to any real so-
lution of any real constraints compatible with
the qualitative constraints.

Second, Q is said to be complete iff Q-Sol(Q-
C)) ⊆ �C|Q(C) = Q-CQ(Sol(C)) for any Q-C, which
means that each qualitative solution of a set of
qualitative constraints is the abstraction of a
real solution of a set of real constraints compat-
ible with the qualitative constraints, but some
real solutions might not be captured.

Ideally, we want Q to be sound and com-
plete, but the next sections show that such
property is generally not achievable.

Different domain abstractions capture differ-
ent ways of reasoning qualitatively used by hu-
mans. In particular, the different intervals of a
partition of � can be identified as orders of
magnitude. The signs partition is a particular
case, which was extensively used by econo-
mists (Ritschard 1983), then by the qualitative
reasoning community (de Kleer and Brown
1984), to formalize reasoning about tenden-
cies. In the following subsections, we present
the mathematical structures and focus on the
mathematical soundness of the formalisms.

Reasoning about Signs
Signs are useful for reasoning about the di-
rection of change of variables describing a
physical system: +, –, and 0 are used when the
variable increases, decreases, and does not
change, respectively. The problem is manipu-
lating these signs to derive the direction of
change of unknown variables or, in other
words, computing the (signed) qualitative state
of a system.

Consider a resistor, as in figure 4, and Ohm’s
law, which represents its physical behavior:

U = RI (1)

where R is the resistance value, U is the voltage,
and I the current. A simple analysis shows that
if we know that U increases and that R remains

steady, then I must also increase. To capture
the various qualitative relations of this kind
implied by equation 1, we write a confluence (de
Kleer and Brown 1984), that is, a constraint on
the signs of the directions of change of vari-
ables:

∂U ≈ ∂R + ∂I (2)

The idea is to implement the well-known com-
binations of signs, such as (+) + (+) = (+), which
is possible in the proper mathematical frame-
work provided by sign algebra.

Let us consider the set S = {+, 0, –, ?}, in
which the element ? is interpreted as unde-
termined sign, or ambiguity, and let us define the
addition and multiplication of signs, as in fig-
ure 5. The element ? is important to guarantee
that addition is a closed operator, for example,
(+) + (–) is defined as ?. Whereas the relation =
denotes the standard equality, ≈ is defined on
S as follows:

For any a and b belonging to S, a ≈ b iff a
= b or a = ? or b = ?.

≈ is called qualitative equality and can be inter-
preted as sign compatibility.

The algebraic properties of sign algebra have
extensively been studied (Dormoy 1988; Piera
and Missier 1989; Travé and Dormoy 1988).
Some basic algebraic properties are as follows:
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assembling the components’ confluences, re-
sulting in a set of confluences. The property
that xi = x or –x for x ∈ S means that we gener-
ally have to deal with qualitative equations
that are linear. Such a set of confluences can be
written in matrix form as AX ≈ B, where A is a
matrix, X the vector of variables (variations),
and B the (constant) right-hand–side vector
and is referred to as a qualitative linear system
(QLS).

Mathematical properties of QLSs have been
studied extensively (Travé and Dormoy 1988),
and interesting notions such as qualitative
rank and hard components have been defined,
in relation to the problem of solving QLSs to
compute the qualitative state of a system
(Travé and Kaszkurewicz 1986; Travé-Massuyès,
Dague, and Guerrin 1997). An important result
is that unlike other more sophisticated qualita-
tive algebras (cf. section entitled Absolute Or-
ders of Magnitude), the results of processing
signs are not only sound but also complete for
QLSs (Travé-Massuyés, Dague, and Guerrin
1997).

Reasoning about Orders of Magnitude
Reasoning about orders of magnitude is a very
natural way to reason qualitatively. Two types
of reasoning about orders of magnitude—(1)
absolute and (2) relative—have recently been
identified (Trave´-Massuyès et al. 2002).

Absolute Orders of Magnitude
Absolute order-of-magnitude (AOM) models sub-
sume and generalize the sign model. They al-
low one to characterize quantities with better
distinctions than just signs. A common AOM
model constructs S by partitioning the real line
into seven classes corresponding to the labels:
(1) negative large (NL), (2) negative medium
(NM), (3) negative small (NS), (4) zero (0), (5)
positive small (PS), (6) positive medium (PM),
and (7) positive Large (PL) (cf. figure 6). 

The AOM models rely on a partition of �,
which defines the quantity space S1 based on a
set of real landmarks including 0. S1 generates
the complete universe of description S of the
AOM model as follows: S = S1 � {[X, Y] | X, Y ∈
S1 – {0} and X <  Y}, where X < Y means that
∀x ∈ X, ∀y ∈ Y, x < y in the sense of inferiority
in �, and the label [X, Y] is defined as the
smallest interval of the real line, with respect to
the inclusion, that contains X and Y. If we now
consider in S the order relationship induced by
the inclusion, that is, for any pair x, y ∈ S, x ≤
y iff x ⊂ y, we obtain a semilattice structure, as
shown in figure 7a, built up from the most pre-
cise to the least precise level. The sign model
can be constructed in the same way from the
sign partition, as shown in figure 7b.

Quasi-transitivity of qualitative equality: If a
≈ b and b ≈ c and b ≠ ?, then a ≈ c.

Compatibility of addition and qualitative
equality: a + b ≈ c is equivalent to a ≈ c – b.

Qualitative resolution rule: Let x, y, z, a, and
b be qualitative quantities such that x + y
≈ a and –x + z ≈ b. If x is different from ?,
then y + z ≈ a + b.

Coming back to our confluence (equation
2) and assuming that ∂U = + and ∂R = 0, then
equation 2 becomes (+) ≈ (0) + ∂I, and it is easy
to deduce that ∂I ≈ (+), which is the correct an-
swer.

The simplistic example of the resistor can be
generalized to much more complex systems,
composed of many components. The whole
system qualitative model is then obtained by

Articles

94 AI MAGAZINE

NL NM NS PS PM

0–b –a a b

PL

Figure 6. The Absolute Order-of-Magnitude (3) Model.

++–

?

[NL, PM] [NM, PL]

[NL, PS] [NM, PM] [NS, PL]

[NM, PS] [NS, PM]

[NL, NM] [NM, NS] [NS, PS] [PS, PM] [PM, PL]

NL NM NS PS PM PL

?

+ –0

A

B

0

Figure 7. Absolute Order-of Magnitude Models Semilattice Structures.
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Qualitative equality can now be formalized
in a general way (generalizing sign compatibil-
ity), conveying the idea of possibility of being
equal, that is, possibility that the items coin-
cide at a higher precision level:

x, y ∈ S, x ≈ y iff there exists z ∈ S such that z ≤ x
and z ≤ y.

Let us now define two internal operators in
S, a q-sum ⊕ and a q-product ⊗, which are con-
sistent with the real sum and product. It has
been shown (Piera and Travé-Massuyès 1989;
Piera, Sanchez, and Travé-Massuyès 1991;
Travé-Massuyès, Piera, and Missier 1989) that
⊕ and ⊗ are compatible with ≈, are both Q-as-
sociative and Q-commutative,2 and are such
that ⊗ is distributive with respect to ⊕. Then,
(S, ⊕, ⊗, ≈) is defined as a Q-algebra (qualitative
algebra of orders of magnitude). 

For a given number of qualitative labels, the
partition of � is not unique because it is de-
pendent on the landmarks’ numeric values.
Hence, it is difficult to define symbolic opera-
tions by tables, and we must use the concept of
qualitative function associated to a real func-
tion, which generalizes qualitative operators.
Interesting properties referring to the re-
versibility of a qualitative relationship and the
existence of a qualitative inverse are shown in
Travé-Massuyès, Piera, and Missier (1989). The
operators ⊕ and ⊗, also noted + and × when
not ambiguous, are Q-reversible: (A + B ≈ C) ⇔
(B ≈ C – A).3 Hence in particular, (A ≈ B) ⇔ (B
– A ≈ 0); this equivalence is only true because 0
is an element of S. Similarly, if A is not qualita-
tively equal to 0, we have (A × B ≈ C) ⇔ (B ≈ C
× (1/A)). If, however, A ≈ 0 but A ≠ 0, 1/A exists
and equals ?; hence, the equivalence is still true
even if it results in B ≈ ?.

The qualitative negation [–A] (associated to
real negation) can also be considered. It satis-
fies that for all A ∈ S, [–A] = –A iff the partition
is symmetric, in which case [–A] is the qualita-
tive opposite of A. However, as pointed out in
Struss (1988), some severe limitations exist be-
cause of the lack of strict associativity and
distributivity. For example, the result of a se-
quence of qualitative operations is not inde-
pendent of the order in which the operations
are performed. The different results are, how-
ever, always qualitatively equal, which actually
means that the minimality of the solution is
not guaranteed; in other words, the solution is
sound but incomplete. Incompleteness is one
of the origins of spurious behaviors in qualita-
tive simulation, as is presented in the section
entitled Qualitative Simulation.

Relative Orders of Magnitude
Another way to view orders of magnitude is to
establish comparative relations between quan-

tities, which is typically the way physicists and
engineers proceed, by considering two quanti-
ties as negligible, comparable, or close. A typi-
cal example is the way a transistor is explained
to students, as having the base current negligi-
ble with respect to the emitter current, which
is, in turn, close to the collector current. 

Relative order-of-magnitude (ROM) relations
can be defined as binary relations, which boil
down to a difference of values or a quotient of
values belonging to an absolute partition. The
first type is based on relations invariant by
translation, whereas the second type is based
on relations invariant by homothety, that is, by
proportional transformation. Because they are
closer to human intuition, all the ROM models
proposed in the literature are based on binary
relations ri invariant by homothety; that is, A ri
B only depends on the quotient A/B. Their ax-
iomatization is described by a set of rules. 

The first ROM model FOG (Raiman 1991) was
based on three relations—(1) negligible with
respect to (Ne), (2) close to (Vo), and (3) com-
parable to (Co, in the sense of “the same sign
and order of magnitude as”)—and included 32
inference rules that were proven to be true
when giving the relations an interpretation in
the field of real numbers of nonstandard analy-
sis (NSA) (Robinson 1966), which roughly
speaking is obtained from � by adding infinite-
ly small and infinitely large numbers.

Reasoning with FOG can be illustrated
through a simple example of mechanics
(Raiman 1991): the impact of two masses of
different weights, M and m, coming from
opposite directions with close velocities Vi and
vi (cf. figure 8).

The two laws of momentum and energy
conservation express that both MV + mv and
MV2 + mv2 remain the same before and after
the impact. Based on only the signs, it is im-
possible to predict the directions of the masses
after the impact. FOG makes it possible to use
the assumptions m Ne M and Vi Vo – vi to cor-
rectly predict that the larger mass keeps the
same direction, and the smaller one changes
direction. Furthermore, one can deduce that
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be interpreted in terms of the corresponding
relative relation(s), and conversely. 

The results produced by a strict interpreta-
tion of ROM models grounded in � generally
differ from what humans produce. A heuristic
interpretation was even proposed for O(M),
borrowing some rules not interpretable in �
from FOG. Hence, the conflicting conclusion
that strict �-based interpretations, although
providing sound results, do not match human
ROM reasoning, but heuristic interpretations
are not intellectually satisfying because they
are not sound!

Other Models
Pushing orders of magnitude to their limits
leads one to consider dominant parameters as
the only parameters, and humans often adopt
the analysis performed under these assump-
tions, which is known as exaggeration reasoning:
Missier (1994) utilizes infinitesimals to repre-
sent the order of growth of a logarithmic-like
function and utilizes them to perform asymp-
totic analysis; Weld (1990) uses exaggeration in
conjunction with differential qualitative analy-
sis techniques; Neitzke and Neumann (1994)
use comparative analysis for simulation; and
Williams and Raiman (1994) uses caricatural
reasoning for decompositional modeling.

At the other end, reasoning about intervals,
that is, about ranges of values, is frequently
used in qualitative reasoning. The intervals for-
malism provides more flexibility than quantity
space–based models, but the fact that intervals
are not mapped onto qualitative labels makes
their semantics weaker. A whole subfield of AI
is devoted to this topic, known as numeric
constraint-satisfaction problems (CSPs), which
use consistency techniques based on interval
arithmetic (Lhomme 1993).

Qualitative Simulation
Most physical systems exhibit dynamics that
cannot be ignored. Then, dynamic models, tra-
ditionally represented by ODEs, are required.
The question of dealing with temporal evolu-
tion and dynamics within a qualitative frame-
work is answered by qualitative simulation.

From a historical perspective, there are three
main approaches to reasoning about dynamic
systems: (1) the component-centered approach of
ENVISION by de Kleer and Brown (1984), (2) the
process-centered approach of QPT by Forbus
(1984), and (3) the constraint-centered approach
of QSIM by Kuipers (1994, 1986). A flavor of the
ENVISION approach was given in the section en-
titled Reasoning about Signs. It is based on
confluences and adopts a quasi-static point of

the velocity of the larger mass after impact re-
mains close to that before impact, and the ve-
locity of the smaller one after impact becomes
close to three times that before impact.

The ROM models that were developed later
improved FOG not only in the necessary aspect
of a rigorous formalization but also in the per-
mitting of the incorporation of quantitative in-
formation and the control of the inference
process to obtain valid results in the real world.

The formal model ROM(K) (Dague 1993b)
proposed to add the relation Di standing for
distant from. The four binary relations Ne, Vo,
Co, and Di are defined by means of 15 axioms,
which provide about 45 inference rules.
ROM(K) has a nice symmetrical property and
the ability to express gradual changes from one
order of magnitude to another thanks to the
existence of overlapping regions when inter-
preted in NSA.

It was then shown (Dague 1993a) how to
transpose ROM(K) to � with a guarantee of
soundness, resulting in the system ROM(�).
ROM(�) permits the incorporation of quanti-
tative information and obtains sound results
while it maintains the semantics of the infer-
ence paths in terms of the four symbolic rela-
tions of ROM(K). ROM(�) relations, negligibil-
ity at order k (Nk), proximity at order k (Pk) and
distance at order k (Dk) are defined in �, para-
meterized by a positive real k. For example, giv-
en two real numbers x and y, then x is defined
to be negligible at order k or k-negligible with
respect to y, x Nk y, if |x| ≤ k |y|.

The previously defined relations are
matched to ROM(K) relations using two para-
meters k1 and k2 in the following way: Vo ↔
Pk1, Co ↔ P1–k2, Ne ↔ Nk1, Di ↔ Dk2. A first
group of ROM(K) axioms is satisfied for any k1
and k2. A second group requires the following
constraint: 0 < k1 ≤ k2 ≤ 1/2. The remaining ax-
ioms cannot be satisfied in �. For these re-
maining axioms, Dague (1993a) proposes to
calculate the order-of-magnitude precision loss
of the conclusion in the worst case. Note that
ROM(�) subsumes the O(M) model proposed
earlier (Mavrovouniotis and Stephanopoulos
1988), which corresponds to the case k1 = k2.

ROM models consistent with � can be
viewed as AOM models with respect to the
quotients of quantities. The two degrees of
freedom of ROM(�), that is, the parameters k1
and k2, determine the landmarks of the parti-
tion. For example, we have x Ne y if and only
if x/y belongs to [–k1, k1]. Recently, Travé-Mas-
suyès et al. (2002) bridged the ROM(�) and
AOM models, examining under which condi-
tions these models are fully consistent. Ab-
solute qualitative labels of two quantities can
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view. QPT is grounded on two fundamental
concepts: (1) individual views, which represent
objects or sets of objects viewed from a partic-
ular perspective, and (2) processes, which repre-
sent active changes taking place (Forbus 1984).
QSIM ignores the model-building task and fo-
cuses on qualitative simulation. A QSIM model
is indeed simply given by a set of qualitative
differential equations (QDEs), which are defined
as an abstraction of ODEs. 

All three approaches have been extremely
influential on qualitative reasoning. Because
QSIM shows a strong relationship with numeric
simulation and allows for the integration of
mathematical results related to ODEs, it has be-
come the reference in terms of qualitative sim-
ulation over the years.

Time Representation
The first question to be answered about time is
whether it should be qualitatively abstracted
like other variable values. However, the answer
depends on the task. 

If the objective is to track the behavior of a
system along time, based on observations de-
livered by sensors at given sampled time
points, it is natural to consider these numeric
time points as landmarks on the time axis. De-

termining the qualitative state can be per-
formed at each time slice independently by
checking the qualitative model against the ob-
servations for consistency. This so-called state-
based approach (Struss 1997) is like dealing
with a succession of static models. For a vari-
able x, no relationship is expressed between
dx/dt and x.

Most efficiently, some mathematical proper-
ties about transitions between time points,
such as continuity or differentiability along
time, can be used to constrain the behavior of
the variables. For example, let’s assume x = a at
time point t and also x = a at time point t′, t′ >
t. Then, if x is continuously differentiable,
dx/dt necessarily equals 0 at one (at least) time
point between t and t′. 

However, using continuity and differentia-
bility properties is often insufficient, and it is
necessary to take advantage of the relationship
between a variable and its derivative.  Both
have values in a finite quantity space consist-
ing of landmarks and the intervals between
landmarks. A linear interpolation is generally
used, which leads to a constraint between x(t),
dx/dt(t) and x(t + 1). Because uncertainty on the
variable gives rise to much higher uncertainty
on its derivative, in most of the applications,
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bles capture the constraints for a one-step pre-
diction. They can be iteratively applied over
several steps, achieving qualitative simulation.

Given lj–1, lj, and lj+1, three adjacent land-
marks in some variable quantity space, an ex-
ample of QSIM P-transitions and I-transitions
starting from the same state is given in table 1.

A consequence of this time representation is
that when two transitions are possible, for ex-
ample, x reaching landmark a and y reaching
landmark b, very often the qualitative model
does not constrain the ordering of these two
events, which gives rise to temporal branching
on whether one event occurs strictly before
the other (and which one), or they occur si-
multaneously. 

Paradoxically, qualitative time representa-
tion formalisms, such as the popular Allen
(1983) algebra based on 13 primitive qualita-
tive relations between two time intervals (such
as before, after, beginning, ending, and dur-
ing), do not fit within the qualitative simula-
tion framework. The same is true for qualita-
tive spatial models (Cohn and Hazarika 2001),
which form a separate set of approaches. 

Functional Abstraction through 
Qualitative Constraints
Very often, the functional relationship existing
among a set of variables is abstracted through
the use of relations instead of functions used in
Domain Abstraction and the Computation of
Qualitative States. For example, addition over
the signs was defined as a function +: S × S → S
in Reasoning about Signs but can be consid-
ered as a relation S* × S* × S* → {true, false},
where S* = S\{?}. By doing so, uncertainty prop-
agation is lower.

Abstraction through relations can be gener-
alized to several types of qualitative con-
straints, which restrict the set of possible values
of the variables. Constraint-satisfaction tech-
niques can then be used to check consistency.
To illustrate this issue, let’s take QSIM. For repre-
senting the behavior of a system, QSIM uses
three kinds of qualitative constraints: (1) arith-
metic, (2) differential, and (3) functional.

Arithmetic: ADD(x, y, z) for z = x + y, MULT(x, y, z)
for z = x. y, MINUS(x, y) for x = –y.

Differential: DERIV(x, y) for y = dx/dt.

Functional: M+(x, y) (M–(x, y)) for y = f(x), and f is a
strictly monotonically increasing (decreasing)
function of x; that is, y = f(x) with f differentiable
and f′ > 0 (f′ < 0).

Nonmonotonic and multivariate qualitative
constraints can also be defined (Kuipers 1986).
In the bathtub example provided in the next
subsection, the relationships between pressure

the quantity space used for the derivatives is
signs; that is, the direction of change of x is de-
creasing, steady, or increasing. 

Continuity and differentiability assump-
tions can be expressed, such as in QSIM, in the
form of transition tables for pairs <x, dx/dt>.
Translation tables are obtained from the
intermediate value and the mean-value theo-
rems. Time points are defined as the instants at
which the qualitative state of the system
changes; that is, at least one variable or deriva-
tive reaches or leaves a landmark of its quantity
space, as illustrated in figure 9, on the variable
plots of the bathtub simulation. Hence, transi-
tions apply either from one time point to the
time interval starting at this time point (P-tran-
sitions) or from one time interval to its ending
time point (I-transitions). Thus, time consists
of a series of alternating points and open inter-
vals between the points. The time points are
not mapped onto physical time; they are just
symbolic instants on which transitions occur,
as in discrete-event models. The transition ta-

P1   <lj, std>            → <lj, std>
P2   <lj, std>            → <(lj, lj+1), inc>
P3   <lj, std>            → <(lj–1, lj), dec> 

I1    <(lj, lj+1), inc>   → <lj+1, std>
I2    <(lj, lj+1), inc>   → <lj+1, inc>
I3    <(lj, lj+1), inc>   → <(lj, lj+1), inc>
I4    <(lj, lj+1), inc>   → <(lj, lj+1), std>
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Table 1. Example of 
QSIM P-Transitions and I-Transitions.

Figure 10. The Bathtub.

 Level

 Inflow

 Outflow

Pressure

Volume



and level and between level and volume are
specified as M+, and the system’s dynamics
comes from the constraint between volume
and netflow, which is differential.

Constraints can be made more specific by
means of corresponding values, which are tuples
of landmarks from variables appearing in the
constraint. For example, a correspondence <l1,
l2> for M+(x, y), where l1 and l2 are landmarks,
means that x is l1 when y is l2. In the bathtub
example, the M+ constraint between volume
and level has two corresponding values (0 0)
and (full max). The proper choice of landmarks
has a critical impact on the qualitative simula-
tion results. Irrelevant landmarks can indeed
cause undesired branching.

A QDE generally has a limited domain of va-
lidity. First, the quantity space of some vari-
ables can be restricted, as in the bathtub exam-
ple for which 0 is the lower bound of the
quantity spaces of the volume, level, pressure,
outflow, and inflow variables. Second, different
operating regions can be specified. Discon-
tinuities can be modeled by means of operat-
ing region transitions, triggered on detection
of a variable taking some qualitative value. The
bathtub model specifies one such transition,
indicating that as soon as the qualitative value
of volume is <full, inc>, then the bathtub over-
flows. Hence, simulation within this region
stops or is resumed in another operating re-
gion, corresponding to another QDE. 

The QSIM Simulation 
of the Bathtub Example 
Let’s consider the bathtub in figure 10. The
bathtub is filled with a constant inflow and has
a drain, which evacuates an outflow. The initial
state is an empty bathtub. The other variables
are the volume and the level of water and the
bottom pressure. We assume that we do not
know the exact values for inflow and outflow
or the physical dimensions of the bathtub, but
we want to predict the behavior of the bathtub.

The QSIM model of the bathtub is given in
figure 11. Qualitative simulation starts from
the initial state and repeatedly generates all
possible successor states. Because in general the
successor state cannot be determined uniquely,
QSIM branches at every possibility. This poten-
tial for a branching sequence of events is an
important difference between qualitative and
numeric simulation. QSIM thus builds a tree of
states: Nodes are system states, and edges are
transitions between states; a behavior is a path
from the root of the tree to a leaf. The behavior
tree for the bathtub given in figure 9 shows
three possible behaviors: The level stabilizes (1)
under max, (2) at max, or (3) overflows.

A leaf of the tree of states is obtained when
a state is a no-change state; that is, its successor
would be identical, would be a cycle (that is, is
identical to one of its predecessors), or is quies-
cent (that is, all the directions of change are
steady, which means that the state is an equi-
librium state or contains at least one variable
taking on an infinite value).

Behavior Abstraction 
Qualitative models are a proper abstraction of
real-valued models in the sense that they rep-
resent a class of real-valued models. The struc-
tural abstraction theorem of QSIM proves that
each ODE can be abstracted into a QDE such
that any continuously differentiable function
that is a solution of the ODE also satisfies the
QDE. Conversely, a QDE is an abstraction of a
whole class of ODEs. 

The behavior abstraction theorem states, il-
lustrated by figure 12,4 that the behavior of a
set of continuously differentiable functions F =
{f1,...,fn} defined over a bounded interval [t0, tn]
can be abstracted uniquely into a qualitative
behavior QB(F, [t0, tn]) given by a sequence of
qualitative states. However in general, the
same qualitative behavior corresponds to a
whole class of continuously differentiable
functions.

Properties of Qualitative Simulation
From the results in the previous subsection, it
can be shown that given a QDE, qualitative
simulation generates all the qualitative behav-
iors corresponding to the solutions of any ODE
in the abstracted class. However, generated be-
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Figure 11. QSIM Model of the Bathtub.

(define-QDE Bathtub
(quantity-spaces

(volume (0 full inf))
(level (0 max inf))
(pressure (0 inf))
(outflow (0 inf))
(inflow (0 f* inf))
(netflow (minf 0 inf)))

(constraints
((M+ volume level) (0 0) (full max))
((M+ level pressure) (0 0) (inf inf))
((M+ pressure outflow) (0 0) (inf inf))
((ADD netflow outflow inflow))
((d/dt volume netflow))
((constant inflow))))

(transitions
((volume (full inc)) -> tub-overflows)))



based simulation (Armengol et al. 2000; Haber
and Unbehauen 1990; Piera, Sanches, and
Travé-Massuyès 1991; Raiman 1991). Second is
take the benefit of results in the area of systems
theory, such as the qualitative phase-space
analysis approach (Bernard and Gouzé 2002;
de Jong et al. 2003; Dordan 1992; Ross et al.
1999). Third is integrate qualitative reasoning
with traditional engineering modeling ap-
proaches such as numeric simulation or system
identification. The first point is exemplified by
the self-explanatory simulation stream (Forbus
1984), and the third point is presented in more
detail in the next section.

System Identification: The 
Need for Qualitative 

Reasoning–Based Approaches 
System identification (Ljung 1987) aims at de-
riving a quantitative model of a dynamic sys-
tem from observations of its output in response
to input. System identification is crucial in sci-
ence and technology because it allows us to get
insights into a number of domains and perform
a wide spectrum of tasks where quantitative in-
formation about the system dynamics is re-
quired. System identification is quite a complex
process that basically involves the experimental
data and a model space to search for the best
model. The construction of the model space
strictly depends on the available domain
knowledge: When it is sufficient to represent
the underlying physics of the processes in-
volved (gray box system), the model space, gen-
erally ODEs, is derived by the proper combina-
tion of the physical laws; when knowledge of
the internal system structure is incomplete, or
no first principles are available (black box sys-
tem), the model space is represented by oppor-
tune function classes, generally nonlinear, that
approximate the functional relationship be-
tween system input and output. In both frame-
works, system identification mainly occurs in
two phases: (1) structural identification, or selec-
tion within the model space of the equation
form, and (2) parameter estimation, evaluation
of the numeric values of the equation un-
known parameters from the observations.

Structural identification is a crucial and dif-
ficult step. In the gray case, an initial guess of
candidate models is suggested by the qualita-
tive properties of the observed behavior, but it
is feasible only if the modeler’s background in-
cludes thorough knowledge of both mathe-
matics and the specific domain. In the black
case, it concerns the choice of the appropriate
function complexity; here, the major drawback
regards the result accuracy: The built model

haviors eventually include so-called spurious
qualitative behaviors. Hence, qualitative simu-
lation is sound but incomplete.

Spurious behaviors are an undesirable fea-
ture, and many solutions have been provided,
depending on the cause: spurious qualitative
states (Struss 1988), spurious state transitions
(Kuipers et al. 1991), or spurious sequences of
qualitative states (Fouché and Kuipers 1992;
Lee and Kuipers 1993). However, in spite of the
proposed solutions, qualitative simulation has
recently been demonstrated inherently incom-
plete (Say and Akin 2002). 

Another important problem is that the num-
ber of possible (nonspurious) behaviors can be
enormous, causing the behavior trees to be in-
tractable and difficult to interpret. Among the
causes of this problem are occurrence branch-
ing, which is the result of incomplete specifica-
tion of the functions leading to irrelevant qual-
itative distinctions, and chattering variables,
which are totally unconstrained variables
(Clancy and Kuipers 1997; Kuipers et al. 1991). 

Toward Integrated Approaches: 
Combining Quantitative and 
Qualitative Knowledge 
Qualitative simulation approaches, exempli-
fied by QSIM, are trapped in the local nature of
the algorithm and the specific formulation of a
qualitative model in terms of constraints. Al-
ternative approaches have been proposed.
They have been shown powerful and can be
viewed as contributions toward a unified mod-
eling approach.

First is use more quantitative information,
such as the semiquantitative simulation ap-
proach, including quantitative extensions of
QSIM such as Q2 and Q3 (Berleant and Kuipers
1997; Kuipers 1994) that preserve the underly-
ing qualitative semantics and interval model-

Articles

100 AI MAGAZINE

qualitative simulation

numeric simulation

analytic resolution

QDE QB(f, [t0, tn])

AbstractionAbstraction

ODE f(t) : [t0, tn]) → ℜc

Figure 12. Behavior Qualitative Abstraction.



does reproduce the observations but does not
capture the underlying physical reality, which
can yield the inadequacy of model-predictive
capability in many cases, for example, when
the data sample is either small or noisy. In both
contexts, the parameter-estimation problem
can also be ill posed, and it might not converge
to the true solution if a “good” guess of the pa-
rameter vector is not provided.

Qualitative reasoning techniques naturally
complement both approaches: In one case, they
allow us either to supply with the necessary
knowledge or to emulate the expert’s reasoning
about structural identification; in the other,
when the box is not completely black, which
quite often occurs, they allow us to easily choose
the proper equation complexity but, above all,
to embed a priori knowledge with a significant
gain in model robustness. To highlight the con-
siderable advantages offered by qualitative rea-
soning–integrated approaches, we consider gray
and black box systems, separately.

Gray Box Systems
RHEOLO (Capelo, Ironi, and Tentoni 1998),
SQUID (Kay, Rinner, and Kuipers 2000), and PRET

(Bradley, Easley, and Stolle 2001) are the most
significant results of the application of qualita-
tive reasoning methods to differential model-
ing. SQUID, based on QSIM semiquantitative ex-
tensions, only deals with the refinement of a
single semiquantitative differential equation
that represents the whole model space, where-
as both RHEOLO and PRET deal with automated
system identification and, in outline, follow
the reasoning flow depicted in Figure 13. PRET

is a general tool for linear and nonlinear sys-
tem identification, and its performance de-
pends on the knowledge it has about the tar-
get system at a given stage of the model-
building process. On the contrary, RHEOLO is
tailored to a specific domain, namely, the rhe-
ological behavior of viscoelastic materials, that
is, materials whose behaviors result from a
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respectively.



stantaneous elasticity, delayed elasticity, vis-
cosity (figure 14a), and delayed elasticity and
viscosity (figure 14b), respectively. However, at
a pure numeric level, they are accurately mod-
eled by an ODE with the same mathematical
structure as the discontinuity in the data in fig-
ure 14a at t = 0, which does represent instanta-
neous elasticity, is smoothed by the numeric
procedures. The identification of the appropri-
ate mathematical structure precedes the quan-
titative refinement step and occurs on qualita-
tive arguments only.

In the complex domain of viscoelasticity,
the mathematical knowledge and skillfulness
necessary for structural identification rarely be-
longs to researchers who, as designers of new
materials, would benefit from models to assess
the material properties. As a matter of fact, re-
searchers mostly perform either (1) the mater-
ial assessment experimentally, with high costs
and poor informative content, or (2) a blind
search over a possibly incomplete model space
that might yield a model that fails to capture
both the material complexity and all the mate-
rial features (Capelo, Ironi, and Tentoni 1996).

The restriction to a well-defined domain
largely compensates for the lack of generality.
The specific domain knowledge has allowed for
the development of ad hoc qualitative meth-
ods, and their integration with numeric and
statistical ones has provided an efficient and
sound solution to the problem of associating a
real viscoelastic material with its constitutive
law. In particular, thanks to these methods, a
sound and complete simulation algorithm has
ben designed, which has allowed us to associ-
ate each model of an ideal material in the mod-
el space with its qualitative behavior in re-
sponse to standard experiments. On the basis
of the qualitative responses, it has been possi-
ble to provide a small but significant contribu-
tion to the domain itself: the model space char-
acterization and its partition into model classes
featured by the same qualitative behavior. The
model space M, automatically generated fol-
lowing an enumerative procedure and a com-
ponent-connection paradigm in accordance
with the domain knowledge, does exhaustively
represent the viscoelastic material domain, to
the extent of the underlying assumptions. Al-
though the enumeration process has exponen-
tial complexity, the partition of the model
space into qualitatively coherent classes has al-
lowed us to achieve optimal linear, rather than
exponential, computational costs.

Let us consider M, which consists of triples
(S, QB(S), M(S)), where S is the material com-
posite structure the ODE model M(S) is built on
and QB(S) its simulated qualitative behavior.

suitable combination of elastic and viscous re-
sponses. 

Let us focus on RHEOLO to illustrate the great
potential in terms of modeling soundness,
computational costs, and actual applicability
of qualitative reasoning integrated approaches.
RHEOLO aims at the formulation of the most ac-
curate ODE model that explains a set of obser-
vations obtained from standard tests on a ma-
terial. Let us observe that in a quantitative
context, the term accuracy can be misinterpret-
ed as referring to numeric accuracy only. How-
ever, a model goes beyond a mere fitting: It
must also capture all the physical features qual-
itatively expressed by the data. To exemplify
this point, let us consider figure 14: The data
sets are related to two materials that exhibit in-
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Figure 14. Weighted Least Squares Fitting of the Strain Response 
of Two Materials with Different Physical Properties. 

The dots and the curve represent the time course of the data and the model pre-
diction, respectively.
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Then, the subset of plausible structures is de-
rived in a straightforward manner by matching
the qualitative profiles of the data, obtained
through qualitative response abstraction
(QRA), against all the QB(S)s in M. QRA infers
a qualitative description of the observed re-
sponse by mapping geometric patterns extract-
ed from the data plot into basic physical fea-
tures. Qualitative simulation and QRA are
fundamental to guaranteeing physical accura-
cy of the identified model because they charac-
terize the relevant physical features of each
model in the space and of the actual material
dynamics, respectively.

Then, the best quantitative model is
searched for in the candidate subset, hierarchi-
cally organized, through an optimization loop.
Such a loop is initialized with the simplest pa-
rameterized model and proceeds with more
and more complex structures until the optimal
order of the model is found in accordance with
a principle of parsimony. This loop nests the
parameter estimation procedure, aimed at eval-
uating the optimal parameter vector that com-
pletely identifies the model of the material.
Such a procedure uses a numeric differentia-
tion scheme, which must suitably be selected
to calculate a sound numeric solution. More-
over, to ensure convergence, “good” guesses
must be provided for the parameters and the
initial values of the differential numeric
scheme. Both numeric problems benefit from
QRA (Capelo, Ironi, and Tentoni 1996): The ab-
stracted qualitative data profile suggests both
the choice of an ODE solver capable of dealing
with stiff solutions and the shape of a function
to be used to calculate the initial parameter
guess through a collocation method of the cur-
rent ODE on the experimental grid.

RHEOLO issues a new challenge in the practi-
cal study of materials. Because of the underly-
ing modeling assumptions, it finds its proper
application to polymers, such as those used in
pharmaceutics, cosmetics, and the food indus-
try. Its applicative potential is shown by Rossi
et al. (1999) and Ironi and Tentoni (2003): It al-
lowed for the model-based assessment of the
mucoadhesion property of a class of pharma-
ceutical polymers, a candidate for use as a drug
carrier in a drug delivery system.

Black-Box Systems
The reconstruction of a relationship f between
the input-output variables from observations is
a difficult problem that has been studied inten-
sively (Haber and Unbehauen 1990). Approxi-
mation schemes, directly applicable and widely
used, are neural networks, multi-variate
splines, and fuzzy systems (Wang 1994). Al-

though successfully applied to many systems,
they fail when the data set is inadequate (Bel-
lazzi et al. 2001). Moreover, the resulting mod-
el f does not capture any structural knowledge. 

Qualitative reasoning can effectively help to
solve these problems in a great deal of situa-
tions: Physical system knowledge is often avail-
able even if insufficient to formulate a quantita-
tive model, and it could conveniently be
embedded into black-box methods. FS-QM (Bel-
lazzi, Guglielmann, and Ironi 2000) integrates
fuzzy systems with qualitative models (figure
15). It solves the crucial problem of the con-
struction of a meaningful fuzzy rule base. The
mathematical interpretation of such a rule base,
automatically generated by encoding the state
distinctions of the system dynamics inferred by
the qualitative simulation of a QSIM model, de-
fines both the complexity and the form of f.
Then, the estimation of its parameter vector θ,
initialized accordingly to prior information (θ0),
completes the system identification process.

The embodiment of physical knowledge into
f, brought in by qualitative models, allows us
to get efficient and robust results both in rich
and poor data contexts, as demonstrated by ap-
plications of FS-QM to metabolic systems. More
precisely, it has successfully been applied (1) to
study the dynamics of the blood glucose level
in diabetic patients in response to insulin ther-
apy and meal ingestion (Bellazzi et al. 1998)
and (2) to identify the dynamics of intracellu-
lar thiamine in the intestine tissue. Concerning
the second system, neither the classical com-
partmental approach nor the input-output re-
gression schemes provided acceptable results
(Bellazzi et al. 2001).

Conclusion and 
Open Issues

This article highlights the mathematical foun-
dations of formalisms proposed to mimic hu-
man qualitative reasoning along with potential
and limitations. Qualitative inferences are
shown to rely on solid theoretical ground, en-
suring that qualitative models are a proper ab-
straction of real-valued models.

This article is not intended as a comprehen-
sive overview of qualitative reasoning. Some
important aspects have been omitted, such as
causality, which is crucial when we want to ex-
plain the behavior of a system (de Kleer and
Brown 1984; Iwasaki and Simon 1986). Howev-
er, the presented concepts and tools show that
qualitative representation offers a significant
modeling methodology. However, it suffers
limitations that can be imputed to the general-
ity of the proposed approaches along with the
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ing, the composition operation, resulting in an
aggregate ODE (or constraint) model, is per-
formed in the head of the modeler who knows
the changes underlying model fragment com-
position. To be automated, this process calls for
influence resolution, that is, the process of trans-
forming a complete set of influences on each
variable to constraints, so the resulting model
will support simulation. Hence, it requires the
concept of influence and the explicit represen-
tation of the phenomena occurring when as-
sembling two fragments. Although qualitative
reasoning has contributed to this topic, and
qualitative process theory can be quoted in this
respect (Falkenhainer and Forbus 1991; Forbus
1984), this issue remains open.

Notes
1. Liliana Ironi was particularly in charge of the sec-
tion entitled System Identification: The Need for
Qualitative Reasoning–Based Approaches, together
with some editing of the entire article.

2. Same definitions as associative and commutative
but replacing = by ≈.

weakness of qualitative information. The first
steps, illustrated in the article, toward the de-
velopment of qualitative reasoning methods
tailored to specific classes of problems, as well
as their integration with numeric-statistical
methods, have confirmed that unified model-
ing approaches can provide solutions that out-
perform either pure qualitative or pure quanti-
tative approaches. 

The automation of the modeling process is
one of the open questions, in particular how to
bridge the conceptual and higher abstraction
models of qualitative reasoning to engineering
models (Struss et al. 2002). Determining a set
of relevant landmarks from the input-output of
numeric quantitative models is a complex task.
The landmarks are indeed conceptually de-
fined as strong invariant points over the differ-
ent operating regions of a system, which must
be opposed to the local nature of numeric
models. 

Compositional modeling is also of great in-
terest. For current practice in numeric model-

Articles

104 AI MAGAZINE

Figure 15. Black-Box Systems: Main Steps of FS-QM.
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3. Qualitative subtraction is defined as the
qualitative function associated to real sub-
traction. 

4. �c = � ∪ {–�, +�}.
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