
■ Knowledge discovery programs in the biological
sciences require flexibility in the use of symbolic
data and semantic information. Because of the vol-
ume of nonnumeric, as well as numeric, data, the
programs must be able to explore a large space of
possibly interesting relationships to discover those
that are novel and interesting. Thus, the frame-
work for the discovery program must facilitate
proposing and selecting the next task to perform
and performing the selected tasks. The framework
we describe, called the agenda- and justification-
based framework, has several properties that are
desirable in semiautonomous discovery systems: It
provides a mechanism for estimating the plausibil-
ity of tasks, it uses heuristics to propose and per-
form tasks, and it facilitates the encoding of gener-
al discovery strategies and the use of background
knowledge. We have implemented the framework
and our heuristics in a prototype program, HAMB,
and have evaluated them in the domain of protein
crystallization. Our results demonstrate that both
reasons given for performing tasks and estimates
of the interestingness of the concepts and hy-
potheses examined by HAMB contribute to its per-
formance and that the program can discover nov-
el, interesting relationships in biological data.

The biological sciences are rich with obser-
vational and experimental data charac-
terized by symbolic descriptions of or-

ganisms and processes and their parts as well as
numeric data from high-throughput experi-
ments. The complexity of the data and the un-
derlying mechanisms argue for providing com-
puter assistance to biologists. Initially,
computational methods for investigations of
relationships in biological data were statistical

(Sokal and Rohlf 1969). However, when the
DENDRAL project demonstrated that AI methods
could be used successfully for hypothesis for-
mation in chemistry (Buchanan and Feigen-
baum 1978; Buchanan, Sutherland, and Fei-
genbaum 1969), it was natural to ask whether
AI methods would also be successful in the bi-
ological sciences.1

Data in the biological sciences have been
growing dramatically, and much of the com-
putational effort has been on organizing flexi-
ble, open-ended databases that can make the
data available to scientists. After the initial
demonstrations of the power of applying ma-
chine learning to biological databases (Harris,
Hunter, and States 1992; Qian and Sejnowski
1988), the application of machine learning to
biological databases has increased. It is now
possible to carry out large-scale machine learn-
ing and data mining from biological databases.
Catalysts for this research were the Intelligent
Systems in Molecular Biology conferences, the
first of which was held in 1993. This confer-
ence brought together people from diverse
groups, all with the realization that biological
problems were large and important and that
there was a need for heuristic methods able to
reason with symbolic information.

Toward Automated Discovery
The end point of scientific discovery is a con-
cept or hypothesis that is interesting and new
(Buchanan 1966). Insofar as there is a distinc-
tion at all between discovery and hypothesis
formation, discovery is often described as more
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work presented in Engels (1996), perform se-
quences of tasks for a discovery goal provided
by a user. Similarly, multistrategy systems such
as that developed by Klosgen (1996) perform
multiple discovery operations, but again, the
discovery goals are provided by a user, as is
evaluation of the discovered patterns. The re-
search presented here describes and evaluates
an agenda- and justification-based framework
for autonomous discovery, coupled with
heuristics for deciding which of many tasks are
most likely to lead to interesting discoveries. 

A Framework for Discovery 
It is essential that a discovery program be able
to reason about its priorities because there are
many lines of investigation that it could pur-
sue at any time and many considerations in its
selection of one. Keeping an explicit agenda al-
lows examination of the open tasks, and keep-
ing explicit reasons why each task is interesting
allows comparing relative levels of interest. We
use an agenda- and justification-based frame-
work, which is similar to the framework of the
AM and EURISKO programs (Lenat 1983, 1982): It
consists of an agenda of tasks prioritized by
their plausibility. As in AM, a task on the agenda
can be a call to a hypothesis generator to pro-
duce more hypotheses or explore some of the
properties of hypotheses (or objects mentioned
in them) already formed. Items are the objects
or hypothesis (and sets of these) examined by
the discovery program, and a task is an opera-
tion on zero or more items. For example, one
task might be to find patterns (using an induc-
tion engine) in a subset of the data that have
an interesting common property, such as being
counterexamples to a well-supported rule. Al-
though Lenat’s programs discovered interest-
ing conjectures in axiomatic domains such as
set theory and games, those programs also con-
tained general, domain-independent heuristics
of the same sort used in empirical domains.

To evaluate our framework, we developed
the prototype discovery program HAMB (Liv-
ingston 2001) that finds interesting, new rela-
tionships in collections of empirical data.2 A
key feature of HAMB is its domain-independent
heuristics that guide the program’s choice of
relationships in data that are potentially inter-
esting. HAMB’s primary generator of plausible
hypotheses is an inductive generalization pro-
gram that finds patterns in the data; in our
case, it is the rule-induction program RL (Pro-
vost and Buchanan 1995). RL is an inductive
generalization program that looks for general
rules in a collection of data, where each rule is
a conditional sentence of the form

opportunistic search in a less well-defined space,
leading to a psychological element of surprise.
The earliest demonstration of self-directed, op-
portunistic discovery was Doug Lenat’s pro-
gram, AM (Lenat 1982). It was a successful
demonstration of AI methods for discovery in a
formal domain characterized by axioms (set the-
ory) or rules (games). AM used an agenda-based
framework and heuristics to evaluate existing
concepts and then create new concepts from
the existing concepts. It continued creating and
examining concepts until the “interestingness”
of operating on new or existing concepts (deter-
mined using some of AM’s heuristics) dropped
below a threshold. Although some generaliza-
tion and follow-up research with AM was per-
formed (Lenat 1983), this research was limited
to discovery in axiomatic domains (Haase 1990;
Shen 1990; Sims 1987). 

Our long-range goal is to develop an au-
tonomous discovery system for discovery in
empirical domains, namely, a program that pe-
ruses large collections of data to find hypothe-
ses that are interesting enough to warrant the
expenditure of laboratory resources and subse-
quent publication. Even longer range, we envi-
sion a scientific discovery system to be the gen-
erator of plausible hypotheses for a completely
automated science laboratory in which the hy-
potheses can be verified experimentally by a
robot that plans and executes new experi-
ments, interprets their results, and maintains
careful laboratory records with the new data.

Currently, machine learning and knowledge
discovery systems require manual intervention
to adjust one or more parameters, inspect hy-
potheses to identify interesting ones, and plan
and execute new experiments. The more au-
tonomous a discovery system becomes, the
more it can save time, eliminate human error,
follow multiple discovery strategies, and exam-
ine orders-of-magnitude more hypotheses in the
search for interesting discoveries (Zytkow 1993). 

AI research on experimental planning sys-
tems has produced numerous successful tech-
niques that can be used in an automated labo-
ratory. For example, Dan Hennessy has de-
veloped an experiment planner for the protein
crystallization problem discussed later that us-
es a combination of Bayesian and case-based
reasoning (Hennessy et al. 2000). Because the
number of possibly interesting discoveries to
be made in any large collection of data is open
ended, a program needs strong heuristics to
guide the selection of lines of investigation.

No published system completely combines
all phases of the empirical discovery process,
although planning systems for knowledge dis-
covery in databases (KDD), such as the frame-
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IF f1 and f2 and ... and fn
THEN class = K (with CF = c)

Each feature (f) relates an attribute (a variable)
of a case to a named value, and a degree of cer-
tainty (CF) is attached to each rule as a measure
of evidential support in the data; for example: 

IF SEX = male and AGE < 30 and 
ADDRESS = pittsburgh 

THEN PERS = geek (CF = 0.6)

The conditional rule, which is easily under-
stood by anyone who knows the meanings of
the variable names, thus says that if a case
matches all the antecedent conditions, then it is
likely to be a member of the named class (K).
Thus, the items in hamb’s ontology are attribut-
es, cases, rule conjuncts, and rules, plus sets of
these. The cases and the attributes used to de-
scribe them are taken directly from the database.

On each cycle, heuristics can create tasks
that result in new items or hypotheses, or tasks
that examine some of the properties of those
items or hypotheses. Each task must have ac-
companying text justifications for performing
it, which are called reasons, qualitative descrip-
tions of why a task might be worth performing
(for example, sets of exceptions to general rules
are likely to be interesting), and each reason
must have an assigned strength, which is a rel-
ative measure of the reason’s merit. 

A task’s plausibility is an estimate of the like-
lihood that performing the task will lead to in-
teresting discoveries, and it is calculated as the
product of the sum of the interestingness of
the items involved in the task and the sum of
the strengths corresponding to the reasons as-
signed to the tasks, as illustrated in the follow-
ing equation: 

Plausibility(T) = (Σ RT) • {Σ Interestingness(IT)}

where T is a task, (RT) is the set of the strengths
of T’s reasons, and {Interestingness(IT)} repre-
sents the sum of the estimated interestingness
of T’s items.

Tasks are performed using heuristics and,
when executed, create new items for further ex-
ploration and place new tasks on the agenda.
When proposing a new task, a heuristic must al-
so provide reasons and corresponding strengths
for performing the task. If new reasons are given
for performing a task already on the agenda,
then they are attached to the existing task, in-
creasing its plausibility. Therefore, the frame-
work provides three additional properties that
Lenat (1982) identified as desirable when select-
ing the next task to perform:

First, the plausibility of a task monotonically
increases with the strength of its reasons.
Therefore, with all else being equal, a task with
two reasons will have a greater plausibility

than a task with only one of those reasons. If a
new supporting reason is found, the task’s val-
ue is increased.3 The better that new reason,
the bigger the increase. 

Second, if a task is reproposed for the same
reason(s), its plausibility is not increased.

Third, the plausibility of a task involving an
item C should increase monotonically with the
estimated interestingness of C. Two similar
tasks dealing with two different concepts, each
supported by the same list of reasons and
strengths of reasons, should be ordered by the
interestingness of those two concepts.

Thus, the top-level control of the framework
is a simple loop: (1) calculate the plausibilities
of the tasks; (2) select the task with the greatest
plausibility; and (3) perform the task, possibly
resulting in the creation or examination of
items, the evaluation of relationships between
items, and the proposal of new tasks. At the
end of each iteration of this loop (called a dis-
covery cycle), a stopping condition is checked to
determine if further exploration is warranted.
In our prototype program, HAMB, the stopping
condition is that either the plausibility of all
tasks on the agenda falls below a user-specified
threshold (that is, no task is interesting e-
nough), or the number of completed discovery
cycles exceeds a user-defined threshold. In cas-
es of repeated consideration of the same task,
the system detects the possible deadlock and
moves to the next most interesting task. 

The use of the agenda- and justification-
based framework to propose and select data-
mining tasks is unique to HAMB. The explicit
representation of the determination of plausi-
bility in the framework allows implementing
programs to easily reorder the tasks when evi-
dence is found in the data to do so. Other data-
mining systems use an explicit notion of the
interestingness of its findings to guide their be-
havior. This explicit representation of plausi-
bility, reasons and strengths for performing
tasks, and interestingness allows notions of in-
terestingness to be changed without repro-
gramming and facilitates other changes to be-
havior, such as modifying how strongly HAMB

should consider a reason when assessing the
plausibility of a task.

Application to 
Protein Crystallography

X-ray crystallography is the primary means of
determining three-dimensional structures of
proteins and other macromolecules. After iso-
lating and purifying a macromolecule, crystal-
lographers must grow crystals that are suffi-
ciently large and regular that the data pro-
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present in the data and contains many known
dependencies. Thus, although the additional
information augments the database and can be
useful to a discovery program, it also increases
the redundancy and the number of nonnovel
patterns in the database, which can make it dif-
ficult to identify the interesting discoveries and
can lead to overfitting (Mitchell 1997).

The attributes in our augmented data set in-
clude (1) macromolecular properties—macro-
molecule name, macromolecule-class name,
and molecular weight; (2) experimental condi-
tions—pH, temperature, crystallization method,
macromolecular concentration, and concentra-
tions of chemical additives in the growth medi-
um; and (3) characteristics of the grown crystal
(if any)—descriptors of the crystal’s shape, for
example, crystal form, and space-groups-de-
scription and its diffraction limit (which mea-
sures how well the crystal diffracts X-rays).

We ran HAMB on the full database, seeding the
agenda with examine tasks for examining each
of the attributes, which were put onto the agen-
da when HAMB loaded the database. While per-
forming these seed tasks, HAMB examined simple
relationships among the attributes, one of which
examines, using heuristics, how predictive one
attribute might be of another. When a good pre-
dictor of an attribute was found, heuristics
caused HAMB to propose the task of selecting a
training set of cases that will be used to induce a
rule set to predict the values of the attribute. Af-
ter selecting a training set of cases, heuristics
cause HAMB to propose the task of selecting a set
of attributes, the feature set, that will be used to
form the rules during the inductive process. Af-
ter HAMB has selected a feature set, a task for se-
lecting the parameters will be given to an induc-
tion program to induce the rules. Once an initial
set of rules was created, HAMB used its heuristics
that apply to rule sets, individual rules, attribut-
es, and relationships to create new tasks, which
were added to the agenda. We let HAMB run with-
out intervention until there were no tasks on the
agenda with plausibility above threshold (1.0).
After 33,204 discovery cycles, HAMB found 575
items it considered interesting. Descriptions of
three cycles are shown in figure 1 and illustrate
the program’s abilities to propose new tasks, rea-
son about the appropriateness of the tasks, and
direct its behavior toward tasks more likely to
produce interesting discoveries.

Cycle 5 in figure 1a illustrates how an at-
tribute is selected as an interesting target con-
cept for rule induction. During cycle 5, a new
task is added to the agenda to select a training
set for inducing rules predicting CRYSTAL-
FORM, which is the first step in inducing rules
predicting CRYSTAL-FORM. 

duced when they diffract X-rays can be inter-
preted as a high-resolution structure. Most crys-
tallographers acknowledge that growing good
crystals is a major (perhaps the major) rate-lim-
iting step in structural studies. Growing crystals
can take many weeks or months when it is suc-
cessful, with little theoretical guidance about
the laboratory conditions that promote success.

The problem we address is discovering condi-
tions under which macromolecules of different
classes are likely to crystallize and grow large,
regular crystals. We started with published data
from numerous crystal-growing experiments,
described later, and asked HAMB to find interest-
ing relationships that could be useful to crystal-
lographers and technicians in the laboratory.
The input to the system is a set of records of
successful and unsuccessful crystal-growing ex-
periments, including the size of the protein, the
chemicals used as precipitating agents and
buffers, and the experimental conditions such
as temperature. The output of the discovery sys-
tem is a set of associations and other relation-
ships that might constitute interesting heuris-
tics for promoting crystal growth in new cases.

Methods 
The macromolecule crystallization data set
consists of reports of experiments for growing
crystals of proteins, nucleic acids, or larger
complexes, such as proteins bound to DNA, for
X-ray diffraction and subsequent determina-
tion of three-dimensional structure (Hennessy
et al. 2000). These data have been problematic
for machine learning and clustering tech-
niques for a variety of reasons: no clear target
attribute, a high level of redundancy in the da-
ta, heterogeneous data (for example, nucleic
acids crystallize under a very different set of
conditions than proteins), and a high degree of
noisy and incomplete data. 

The database was derived from a subset of
the Biological Macromolecule Crystallization
Database (Gililand, Tung, and Ladner 1996),
from which we selected 2,225 cases. These data
were supplemented with additional chemical
information: macromolecule type, the “per-
ceived role” of the additives in the experiment
(for example, precipitant, buffer), the ions the
additives break down into, the net charge of
the ions, the buffering capacity of the growth
medium, and so on (Hennessy et al. 2000). The
total number of attributes in this new database
was 170, with several attributes having missing
values for many of the cases. The intent of
adding new information was to give the dis-
covery system more possibilities for finding
plausible discoveries. However, much of the
new information overlaps information already
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A. Cycle 5

HAMB examines predictivity relationships involving the attribute crystal-form before
the other attributes because it has a higher estimated interestingness at this point in
the discovery cycle.

• HAMB discovers that there are two strong predictors of crystal-form and that crystal-
form is highly predictive of several others.

• One of HAMB’s heuristics suggests that it is easier to induce good rules for a target at-
tribute with many good predictors, causing hamb to propose a task to select a
training set for inducing rules predicting crystal-form each time HAMB discovers a
good predictor of crystal-form.

• Similarly, each time HAMB discovers that crystal-form is a good predictor of another
attribute, HAMB proposes a task to select a training set for that attribute.

This excerpt illustrates a heuristic opportunistically identifying a potential rule-
induction target.

B. Cycle 1,029

HAMB selects a training set for inducing rules predicting crystal-form’s values before
doing so for other attributes primarily because crystal-form has the greatest a priori in-
terest to the user but also because HAMB has discovered many good predictors of crys-
tal-form.

• HAMB creates the training set from the discovery database’s examples that do not
have uninformative values for crystal-form (for example, missing values, or “mis-
cellaneous”), avoiding the induction of many uninteresting rules.

• The selected training set is small, containing only 164 of 1,482 possible examples.
• HAMB proposes the next step of inducing rules that predict crystal-form’s val-

ues—selecting a feature set.
• Because HAMB believes that it is harder to induce good rules using a small training

set, HAMB assigns very low strengths to the reasons it provides for selecting a feature
set for crystal-form, causing HAMB to postpone performing the newly proposed task
until cycle 11,172.

• When HAMB finally does induce a rule set for crystal-form, the accuracy of the in-
duced rule set on the testing database is 0.02.

This excerpt shows HAMB assigning low strengths to a task its heuristics suggest would
not lead to a promising line of investigation.

C. Cycle 1,202

HAMB selects a training set for inducing rules predicting the attribute add-iron-[ii]-ci-
trate.

• HAMB selects a training set for add-iron-[ii]-citrate before most of the attributes, not
because it has a high estimated interestingness but because HAMB found many rea-
sons for performing this task.

• The selected training set contains 1,482 of 1,482 possible examples.

This excerpt depicts HAMB performing a task because it has determined that add-iron-
[ii]-citrate might be an easy rule-induction target (not shown are the many reasons
hamb found for doing so), not because add-iron-[ii]-citrate is especially interesting to
the user.

Figure 1. Excerpts Taken from a Run of HAMB.
Parts A, B, and C show three separate discovery cycles. These excerpts are taken with the macromolecule crystal-
growing data illustrating HAMB’s ability to be opportunistic as well as postpone less promising tasks. The bullets iden-
tify what HAMB’s heuristics note when examining the results of performing a task and what tasks they propose and
the reasons and strengths given for performing the tasks.



known associations are given in figure 2a. Nu-
cleic acids are highly negatively charged, re-
quiring stabilization, and the most common
reagent used to stabilize them is magnesium
chloride. However, with proteins, magnesium
chloride is avoided because of its tendency to
promote the growth of crystals of magnesium
salts rather than protein crystals. HAMB’s ability
to rediscover some of the patterns already
known suggests that HAMB might be able to find
equally useful patterns that are novel.

Other discoveries made by HAMB that increase
our confidence in the results are its discovery of
chemically reasonable patterns. These patterns
often overlap those already known but have an
obvious chemical interpretation. Two of these
discoveries are given in figure 2b. Divalent
cations (which include magnesium) effectively
stabilize nucleic acids because of their chemical
properties. They tend to be avoided with pro-
teins because another (undesirable) property of
divalent cations is that many salts of divalent
cations are insoluble.

A few of the more interesting category 3 dis-
coveries (apparently novel and significant) are
presented in figure 2c. Category 3 discoveries
can be helpful to crystallographers, but be-
cause the data are noisy and are biased by hu-
man preferences, further investigation is need-
ed to confirm their validity. The first three rules
given in figure 2c suggest that different proce-
dures should be used for specific types of
macromolecules. The second three rules in fig-
ure 2c suggest that different ionic strengths
might be required when there are crystallizing

Cycle 1029 in figure 1b shows HAMB assign-
ing low strengths to a task its heuristics suggest
would not lead to a promising line of investi-
gation. One of HAMB’s heuristics encodes the
“common knowledge” of statistics that more
reliable rules can be induced from larger rule
sets. Thus, in this instance, HAMB assigns low
strengths to the reasons given for selecting a
feature set for the attribute CRYSTAL-FORM.

Cycle 1202 in figure 1c depicts HAMB begin-
ning the process of inducing a rule set for a tar-
get attribute because it has found many rea-
sons for doing so. To avoid unnecessary detail,
we did not show the individual reasons.

Evaluation of HAMB’s Discoveries 
We manually removed 144 discoveries that we
considered to be equivalent to others and
asked our collaborator,4 John Rosenberg, to as-
sess the novelty and interest of the remaining
431 discoveries. He categorized them by their
significance and novelty according to the cate-
gories shown in table 1, along with the num-
bers (and percents) of discoveries in each cate-
gory. The redundant rules are counted as
category 0 (uninteresting) discoveries in the
table. Some of the specific items found to be in-
teresting are shown in figure 2.

Some of HAMB’s discoveries are interesting,
not because they are extremely significant and
novel but because they increase our confidence
in HAMB’s ability to detect patterns. Some of
these patterns are rediscoveries of some of the
crystallography “lore,” which most practition-
ers would already know and use. Two of these
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Category Description Number Percent

4 Individually, category 4 discoveries could
be the basis of a publication in the crystal-
lography literature, being both novel and
extremely significant to crystallography.

0/575 0

3 In groups of about a dozen, category 3 dis-
coveries could form the core of research
papers in the crystallography literature.

92/575 16

2 Category 2 discoveries are about as signifi-
cant as category 3 but are not novel.

192/575 33

1 Category 1 discoveries are not as interest-
ing as category 2 or 3 but still are of some
interest.

51/575 9

0 Category 0 discoveries are any discoveries
that are not category 1, 2, 3, or 4.

240/575 42

Table 1. Significance and Novelty of 575 Discoveries.
Categorization of the significance and novelty (interestingness) of 575 discoveries made by HAMB from the
macromolecule crystallization database. The 144 redundant rules removed during the semimanual filtering are
counted as category 0 discoveries. Removing these 144 rules from the calculations results in only 22 percent
(96/431) of category 0 discoveries.
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A. Rediscoveries known in the crystallography “lore” (category 2)
Macromolecule class is nucleic-acid ⇒ magnesium chloride is present

(true positives: 60; false positives: 54; sensitivity: 0.45; positive predictive value:
0.53; p-value: < 0.001)

Macromolecule class is protein ⇒ magnesium chloride is not present
(true positives: 1862; false positives: 60; sensitivity: 0.90; positive predictive
value: 0.97; p-value: < 0.001)

B. Rediscoveries having clear chemical explanations (category 2)
Macromolecule class is nucleic-acid ⇒ inorganic divalent ions are present

(true positives: 81; false positives: 36; sensitivity: 0.35; positive predictive value:
0.69; p-value: < 0.001)

Macromolecule-class is protein ⇒ inorganic divalent ions are not present
(true positives: 1660; false positives: 262; sensitivity: 0.92; positive predictive
value: 0.86; p-value: < 0.001)

C. Discoveries interesting and novel enough to warrant further investigation
(category 3)

Macromolecule class is P.RNA.E ⇒ crystallization method is batch
(true positives: 141; false positives: 88; sensitivity: 0.39; positive predictive value:
0.62; p-value: < 0.001)

Macromolecule class is P.S.H ⇒ crystallization method is temperature crystallization
(true positives: 22; false positives: 30; sensitivity: 0.73; positive predictive value:
0.42; p-value: < 0.001)

Macromolecule class is P.S.L.O ⇒ concentration by evaporation
(true positives: 67; false positives: 14; sensitivity: 0.65; positive predictive value:
0.83; p-value: < 0.001)

Macromolecule class is enzyme ⇒ ionic strength is greater than 2.21 and less than
or equal to 5.98
(true positives: 151; false positives: 638; sensitivity: 0.53; positive predictive
value: 0.21; p-value: < 0.001)

Macromolecule class is P.S.H ⇒ ionic strength is greater than 5.98
(true positives: 90; false positives: 139; sensitivity: 0.28; positive predictive value:
0.39; p-value: < 0.001)

Macromolecule class is P.S.L ⇒ ionic strength is less than or equal to 2.21
(true positives: 114; false positives: 137; sensitivity: 0.32; positive predictive
value: 0.45; p-value: < 0.001)

D. Other types of discoveries (categories 3 and 1)
Equivalence classes of attributes:

(CH < = –4, CH > = 4, ADD-SODIUM_AZIDE, SPEC-AZIDE)

Frequency of missing values of attributes:
Buffering capacity 0.69
Crystal form 0.67
Temperature 0.35
Ionic strength 0.26
Macromolecule concentration 0.25
Diflim 0.23
PH 0.13

Figure 2. Some of HAMB’s Discoveries.
Parts A, B, C, and D show different kinds of discoveries from categories 1, 2, and 3. The statistics reported for
each rule are calculated from a validation set not used to learn the rule. The p-value of a rule’s positive predic-
tive value is computed using the Fisher’s exact test (Sokal and Rohlf 1969). p.rna.e macromolecules are proteins
that bind to RNA and catalyze a chemical reaction that modifies it; p.s.h. (“heme”-containing) macromolecules
are soluble proteins containing an iron-porphyrin prosthetic group (for example, hemoglobin and cy-
tochrome); P.S.L. macromolecules are small proteins and peptides; and P.S.L.O. macromolecules are heteroge-
neous subgroups of P.S.L.



ly from the tasks on the agenda; (2) REASONS-ON-
LY-HAMB, which computes the plausibility of a
task as the sum of the strengths of the task’s
reasons; and (3) INTERESTINGNESS-ONLY-HAMB,
which computes a task’s plausibility as the sum
of the estimates of the interestingness of the
items involved in the task.

Figure 3 presents a graph of the sum of the
interestingness of the discoveries given in peri-
odic reports by the four versions of HAMB versus
the discovery cycles that followed the genera-
tion of the reports. When comparing the
graphs for HAMB and RANDOM-HAMB in figure 3,
note that for the first approximately 1,500 dis-
covery cycles, RANDOM-HAMB’s total interesting-
ness is greater than HAMB’s, after which HAMB’s
scores equal or exceed random-HAMB’s. We at-
tribute this difference to preliminary investiga-
tions that HAMB performs on the attributes and
their relationships before inducing rule sets.
The additional time HAMB spends examining
the attributes is useful in reducing the redun-
dancy of its discoveries. The plot shown in fig-
ure 3 only reports the total interestingness of
the reported discoveries, including redundan-
cies. Another study, reported later, shows that
HAMB is able to use this discovered knowledge
to reduce the redundancy in its induced rule
sets by 19 percent.

enzymes, “heme”-containing proteins, and
small proteins. Because many crystallographers
have their preferred crystallization techniques,
experimental work is needed to discern
whether these patterns represent human pref-
erences or real chemical associations. However,
in either case, the results would be useful. 

Figure 2d presents some of the types of dis-
coveries HAMB makes in addition to rules—at-
tributes with equivalent extensions and attrib-
utes with frequently missing values. Both of
these types of discoveries are useful in evaluat-
ing the quality of the data. The discovery of ex-
tensionally equivalent attributes that are not
intensionally equivalent demonstrates that the
data are insufficient for discriminating between
the two attributes. The identification of attrib-
utes with a large proportion of missing values
suggests that additional data might be needed
to induce good rules for those attributes.

Lesion Studies of the 
Plausibility Function 
Given an assessment of the degree of interest
of more than 400 discoveries, we performed le-
sion studies to further evaluate the plausibility
function. To perform this experiment, we used
HAMB and three variations: (1) RANDOM-HAMB,
which selects the next task to perform random-
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Figure 3. Plot of the Total Interestingness of Reported Discoveries Versus the 
Time Taken to Make Them for HAMB and Each of the Three Variations. 

Total interestingness is the sum of the category numbers assigned to the reported discoveries. Discovery cycle is the discovery cycle after
which the discoveries are reported. The curves converge because eventually nearly all the interesting discoveries from the initial database
are found by all the methods (as a result of our only using a subset of the data during this study).



The difference between the two plots for
HAMB and RANDOM-HAMB after 1,500 discovery
cycles is statistically significant (p-value is
0.007).5 Differences are significant between
HAMB and REASONS-ONLY-HAMB (p-value is 0.003)
and between HAMB and INTERESTINGNESS-ONLY-
HAMB (p-value is 0.049).

We also compared the average interesting-
ness of the discoveries made by the four ver-
sions of HAMB and found that the plot for RAN-
DOM-HAMB was slightly better and that the
p-value of the difference between these two
plots is 0.015.

RANDOM-HAMB’s tasks are randomly selected
from the agenda, not from the space of all pos-
sible tasks; therefore, RANDOM-HAMB’s behavior
is aided by the heuristics that propose the
tasks, biasing its task selection toward more ap-
propriate tasks. If RANDOM-HAMB’s tasks had
been selected from the space of all possible
tasks rather than the space of tasks chosen by
the heuristics, RANDOM-HAMB’s performance
would probably have been much worse.6

Note that HAMB often uses the results of tasks
performed earlier when performing the current
task; therefore, the order in which the tasks are
performed is important. For example, HAMB us-
es its discoveries of equivalence classes to re-
duce the number of redundant discoveries. 

Evaluation of HAMB’s Use of 
Domain-Specific Knowledge 
We performed a lesion study to evaluate the ef-
fectiveness of some of HAMB’s heuristics that use
domain-specific knowledge. To perform this
study, we used 500 cases randomly selected
from the macromolecule crystallization data.

The unmodified version of HAMB with the
complete domain theory was also run on this
set of cases, as was a version of HAMB that used
no domain knowledge. In the study described
later, this second version is called no-domain-
knowledge.

The heuristics tested during this study are as
follows:

Heuristics reducing redundancy by elimi-
nating synonyms: If an attribute is found in
the feature set that is synonymous (as either
discovered by HAMB or stated in the domain
theory) with another attribute in the feature
set, the attribute with the lesser estimated in-
terestingness is removed from the feature set. A
baseline version of HAMB omitted these heuris-
tics and did not eliminate synonyms. It al-
lowed the creation of 40 (19 percent) more re-
dundant rules than did HAMB. This result was
surprisingly low because the data contain
many similar attributes. However, HAMB’s defi-
nition of redundancy is very strict, requiring

either intensional or extensional equivalence;
therefore, only a few pairs of attributes met its
strict criterion of similarity.

Heuristics reducing the number of uninter-
esting discoveries: The domain theory can con-
tain knowledge about attributes and values that
are uninteresting or meaningless to the user.
HAMB’s heuristics use this knowledge to avoid in-
ducing rules containing uninteresting features
(either in the left-hand side or right-hand side of
a rule). A baseline version of HAMB omitted this
heuristic and allowed the generation of 300
(141 percent) additional uninteresting rules.

Heuristics reducing the number of non-
novel discoveries: HAMB uses domain knowl-
edge to remove attributes that have a known as-
sociation (by causation, definition, association,
and so on) with the current target attribute. It
also removes attributes that are discovered to be
extensionally equivalent to the target attribute.
The baseline version of HAMB used to test these
heuristics omitted this use of domain knowl-
edge and allowed the generation of 2,897
(1,367 percent) additional non-novel rules.

The regular version of HAMB induced 212
rules in this experiment, whereas the baseline
no-domain-knowledge version induced 3,936
rules. Thus, HAMB was able to use domain
knowledge to avoid the creation of 3,724 rules
that are uninteresting by definition. Although
the number of interesting rules is about the
same in each case, the percentage of interesting
rules shown to the user is much higher in the
first case. In addition, HAMB only required 5,030
discovery cycles to finish, but the baseline no-
domain-knowledge version required approxi-
mately 45,000 cycles. From these results, we
conclude that the domain-specific knowledge
used by these heuristics focuses HAMB on a
smaller set of interesting rules in less time.

Evaluation of Generality 
To evaluate the generality of the system, we
used HAMB to perform discovery from a second
database that was quite different in content:
There were 930 cases of patients in rehabilita-
tion after a medical disability, such as stroke or
amputation. There are 11 attributes in the data-
base, ranging from demographic data to admis-
sion and discharge scores of the patients’ func-
tional independence measures (FIM). Thus, this
database represents a domain that is dissimilar
to the macromolecule crystallization domain.

After running HAMB with these data, we pre-
sented HAMB’s discoveries to the physician who
provided us with the data, Dr. Louis Penrod of
the University of Pittsburgh Medical Center.
Some domain-specific knowledge was provided,
which was referenced by some of the heuristics.
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problem only requires the changing of the
problem-specific information in the domain
theory file, not the framework or HAMB’s heuris-
tics. A study of HAMB’s generality shows that the
framework and heuristics are domain indepen-
dent. The general heuristics we have imple-
mented to date fall into three classes: (1)
heuristics that select rule-induction targets and
other goals worth pursuing; (2) heuristics that
keep an item’s properties and relationships suf-
ficiently up to date, allowing a discovery sys-
tem to select appropriate tasks without need-
lessly reexamining these properties and
relationships after every task; and (3) heuristics
that reference domain-specific properties to
improve the quality of reported discoveries. 

Although this set of heuristics is incomplete,
we provide evidence that they are useful and
partially accomplish our goal of guiding a near-
ly autonomous discovery system by separating
interesting hypotheses from other associations
found in a database. Because heuristics create
and execute tasks, we sometimes refer to them
interchangeably, although tasks are instantiat-
ed with specific arguments.

HAMB’s Domain-Independent Knowl-
edge about Performing Discovery
HAMB’s domain-independent knowledge about
using rule induction to perform discovery
comes in a variety of types, three of which are
discussed in the following paragraphs: (1) rela-
tionships among attributes that are useful to
examine; (2) properties of items that help iden-
tify interesting items; and (3) heuristics that
are used to perform the tasks, during which
new items might be created, and new tasks
might be proposed.

Relationships The space of relationships
among items that could be examined is im-
mense. One of the types of general knowledge
about discovery that HAMB uses is knowledge
about which of these possible relationships to
examine. We defined a set of relationships that
seemed useful when we manually performed
the knowledge discovery process; these rela-
tionships overlap many of those used in data
mining and association mining. Although
some machine learning and data-mining sys-
tems look for one or two of these relationships,
few systems look for as many as HAMB does. 

Unexpectedly equivalent items: Rela-
tionships identifying unexpectedly equivalent
items consist of pairs of items of the same item
type (for example, two attributes) that have
nearly identical extensions among the exam-
ples but that are not equivalent (as defined by
the domain theory). Currently, only attributes
and rule clauses are tested for unexpected

This knowledge consisted of specialization (for
example, disability class is specialized by disabil-
ity) and derivational (for example, admit FIM
and discharge FIM are used to derive the
amount of improvement) relationships among
the attributes and their values. Penrod decided
that there were 26 (9 percent) category 3 discov-
eries (novel and significant), of which 2 were
bordering on category 4 (revolutionary), 5 (2
percent) were category 2 discoveries (non-novel
but significant), 53 (18 percent) were category 1
discoveries (novel and marginally interesting),
and 215 (71 percent) were uninteresting. 

Because of the smaller number of attributes,
we were able to represent almost all the known
relationships among the attributes, which
HAMB’s heuristics were able to use to reduce the
proportion of category 2 (previously known
but significant) discoveries. Because this do-
main is a clinical domain in which discoveries
must have strong empirical support before
they can be used in a clinic, the criteria for the
usefulness of a discovery are more stringent
than those for the macromolecule crystal-
growing domain, in which the crystallograph-
er is looking for any clue or hint that would
help him/her increase his/her chances of grow-
ing a useful crystal. Therefore, it is understand-
able that the proportion of uninteresting dis-
coveries is greater for this domain (rehabi-
litation) than for the crystal-growing domain. 

Our conclusion from this study is that the
heuristics are general enough to make signifi-
cant discoveries from two dissimilar domains.

Details of the HAMB Program
HAMB’s input consists of the file containing the
set of cases that it will use to make its discoveries
(the discovery database), an optional testing set
of examples (the testing database), and a domain
theory file containing problem- and domain-
specific information. HAMB reports as discoveries
those items with interesting relationships or
properties. A property or relationship is interest-
ing if its value exceeds a threshold provided for
each relationship or property. HAMB creates a re-
port for each relationship or property, where the
items having values for that property or rela-
tionship greater than or equal to the threshold
are listed in decreasing order.

HAMB uses a variety of knowledge, both gen-
eral domain-independent heuristics about per-
forming the tasks and problem- and domain-
specific information. The problem- and
domain-specific information is kept in a sepa-
rate file called a domain theory file. Thus, we
have a clean separation of HAMB’s knowledge;
allowing the application of HAMB to a new
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equivalence. During the evaluations of HAMB,
several pairs of attributes and rule clauses were
identified that were essentially equivalent in
the cases given to HAMB but were not specified
as equivalent in the domain theory. 

Coupled items: Pairs of attributes or rule
clauses are said to be coupled when one of them
is always (allowing for a small degree of noise)
used in a rule whenever the second is used. For
now, the default in the domain theory is that
no two attributes or rule clauses are coupled.
Any couplings that HAMB discovers would be in-
consistent with this assumption and assumed
to be novel and interesting. Although poten-
tially interesting, HAMB discovered none of
these relationships in the study described here. 

Exceptions: These relationships identify
pairs of items where one specializes the other
and has different implications. In particular,
pairs of rules are exceptions when the first
rule’s left-hand side is specialized by the left-
hand side of the second, but the class predicted
by the general rule differs from the class pre-
dicted by the specialization. For example, “(age
> 50) → has-pneumonia” and “(age > 50) and
(fitness = good) → no-pneumonia.”

Related items with significantly differing
performance: Pairs of related items of the
same type with significantly different perfor-
mance are likely to be surprising and, thus, in-
teresting. HAMB checks for either of two cases:

In case one, pairs of rules predict the same
class, the right-hand side of the first rule is spe-
cialized by that of the second, and the more
general rule has a significantly lower positive
predictive value. An example of this type of re-
lationship is the following pair of rules: 

Rule 1 (general rule): “An organic amine is
present → the macromolecule being crystal-
lized is a nucleic acid,” which predicts the type
of macromolecule being crystallized correctly
for 63 examples and incorrectly for 97 exam-
ples (PPV = TP/(TP + FP) =  0.39).

Rule 2 (specialization): “An organic amine is
present AND ammonium is not present → the
macromolecule being crystallized is a nucleic
acid,” which predicts 62 examples correctly
and 25 examples incorrectly (PPV =  0.71).

In case two, pairs of rule sets are such that
one is a subset of the other, and the subset has
a significantly higher accuracy. This result is
surprising because adding more rules would be
expected to increase predictive accuracy. An ex-
ample would be the pair of rule sets rule-set-1,
which has an accuracy of 0.90 and consists of
rules A and B, and rule-set-2, which has an ac-
curacy of 0.80 and consists of rules A, B, and C. 

Other tests described by Livingston, Rosen-
berg, and Buchanan (2001a) that signal inter-

esting relationships among items include other
kinds of surprises, consistent variation of mea-
sured values, and high information gain (Quin-
lan 1993) of an outcome variable with the ad-
dition of a predictive variable.

Properties    Similar to relationships, the space
of possible properties of items that could be ex-
amined is huge. Therefore, HAMB uses general
knowledge to guide which of the possible
properties to examine. There are 10 properties
that make attributes interesting, 3 for example
sets, 5 for the predicted values, 6 for rule claus-
es, 10 for rules, and 8 for rule sets. These prop-
erties are summarized here and described in
more detail in Livingston (2001).

Properties measuring syntactic simplicity are
designed to measure various aspects of syntac-
tic simplicity, such as the number of cases in a
set of cases, or the number of clauses in a rule’s
left-hand side. There are five of these proper-
ties: (1) the number of unique clauses used in
the rules of a rule set, (2) the number of values
of an attribute, (3) the number of clauses in the
left-hand side of a rule, (4) the number of
members of a rule set or a set of cases, and (5)
the ratio of the number of cases in a set of cases
to the total number of cases.

Properties measuring the performance of
rules or rule sets measure the empirical support
of rules and rule sets. There are seven of these
properties: two for rule sets and five for rules.
The two properties for measuring the perfor-
mance of rule sets are (1) positive predictive
value (TP / (TP + FP)) and (2) accuracy, includ-
ing false negatives to be incorrect predictions.
The five properties measuring performance for
rules are (1) sensitivity (TP/(TP + FN); (2) speci-
ficity (TN / (TN + FP)); (3) positive predictive
value (PPV); (4) negative predictive value
(NPV) (TN / (TN + FN)); and (5) p-value, which
is the statistical significance of a rule’s PPV over
the prior frequency of a rule’s right-hand side
(note that TP = true positives, FP = false posi-
tives, TN = true negatives, and FN = false nega-
tives). The p-value is computed using the Fish-
er’s exact test (Sokal and Rohlf 1969).7

Other properties of items that make them in-
teresting include considerations of utilities and
significance in the domain, the frequency of
use of attributes in rule clauses, and the num-
ber of examples with missing values for an at-
tribute. For example, this last property might
indicate that 75 percent of the examples have
missing values for the attribute weight, which
might indicate that the data are of poor quali-
ty, particularly with respect to weight.

HAMB’s Heuristics and Associated Tasks
HAMB’s agenda- and justification-based frame-
work depends heavily on the heuristics that
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user when he/she is examining the results of
performing a task. With potentially millions of
items in a discovery program’s ontology, reex-
amining the properties and interestingness of
the items every time a task is performed is com-
putationally expensive. Instead, our heuristics
periodically re-evaluate the items to identify
any new findings about them and to keep the
values of their properties and estimated inter-
estingness reasonably up to date. We hypothe-
size that merely keeping the property and esti-
mated interestingness values close to the
correct values will be sufficient. Whenever a
heuristic indicates that some aspect (property,
relationship, or interestingness) of an item
might have changed, a task is proposed for re-
examining the item. 

Five types of tasks achieve the general goal
of examining items: (1) examine-item tasks,
which evaluate an item’s properties and inter-
estingness, and four additional tasks, which ex-
amine the item’s relationships—(2) examine-re-
lationships-with, (3) examine-r-relationships, (4)
examine-rule-families, and (5) examine-relation-
ship tasks. These tasks are presented in table 2.

Heuristics for creating new items by in-
duction: When HAMB determines that an at-
tribute might make an interesting target vari-
able (such as an attribute is defined in the
domain theory as one of several target attri-
butes, or it discovers a potentially good predic-
tor of the attribute’s values), heuristics propose
a task for selecting a training set of examples
for inducing rules predicting the value of that
variable. Performing the task of selecting a
training set for a target variable begins the se-
quence of subtasks that HAMB performs to in-
duce a rule set for the target variable: selecting
a training set; selecting a feature set; selecting

create and perform tasks, evaluate the results of
performing the tasks, and assign reasons to the
newly proposed tasks. In addition, heuristics
inspect the items and their relationships and
estimate the interestingness of the items. We
have tried to make our heuristics problem in-
dependent so that applying HAMB to new prob-
lems would not require revising the heuristics. 

When it was practical, we decomposed the
tasks HAMB would perform so that each task
would only involve one fundamental opera-
tion. For example, we decomposed the induc-
tion of a rule set into several tasks: selecting a
training set, selecting a feature set, selecting the
parameters for the induction program, and call-
ing the induction program to induce the rule
set. This decomposition provided two benefits:
(1) making the tasks and heuristics more mod-
ular, which facilitates their comprehension,
modification, and the addition of new tasks
and heuristics, and (2) putting the subtasks on-
to the agenda, allowing HAMB to use the results
of performing earlier subtasks of a goal to rea-
son about the fruitfulness of achieving the goal
and allowing HAMB to delay less promising goals
in favor of more promising ones.

HAMB’s tasks can be divided into three groups
based on function: (1) heuristics for examining
items; (2) heuristics for creating new items us-
ing rule induction; and (3) heuristics for creat-
ing exception sets, sets of cases that are mis-
prediced by induced rule sets.

Heuristics for examining items: These
heuristics solve a novel problem for au-
tonomous discovery systems—keeping the val-
ues of an item’s properties, relationships, and
interestingness sufficiently up to date without
recalculating their values after every discovery
cycle. Typically, this task is performed by the
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Tasks Created by Heuristics Summary

Examine-item (item) Check item’s membership in item groups, evaluate item’s
properties, and estimate its interestingness.

Examine-relationships-with (item) For each type of relationship R defined to hold with item,
propose an examine-r-relationships-with task.

Examine-r-relationships (item, R) For each possible relationship of type R that could hold with
item, if the relationship can be evaluated quickly, then do so;
otherwise, propose a task for examining that relationship.

Examine-relationship
(item1, item2, ... itemn, R)

Evaluate the R relationship among item1, item2, ... itemn.

Table 2. An Overview of HAMB’s Tasks for Examining Items.
Tasks indicate the type of task, and the summary provides a brief description of the purpose of a task. Examine-item tasks that are proposed
during initialization are shown.



a parametric bias; and calling an induction
program (RL) with the selected training set,
feature set, and bias. Each of these subtasks cor-
responds to one of HAMB’s tasks shown in table
3: select training set, select feature set, select
bias, and induce rule set, respectively. To en-
sure that HAMB performs the tasks in the order
given, the heuristics are designed so that after
the completion of one of these tasks, the next
task in the sequence is proposed.

HAMB often uses the results of the current
task to determine the strengths of the reason
given for performing the next task in the se-
quence, allowing HAMB to factor the results of
the current task into its decision about when to
perform the next task in the sequence, if at all.
For example, the heuristic for selecting a train-
ing set proposes a task for selecting a feature
set, with the strengths of the reasons given for
the proposed task being proportional to the
size of the training set (encoding the rule of
thumb that inducing a rule set from a small
training set might result in a rule set with poor
performance on future cases).

Heuristics for exception sets: We added
heuristics allowing HAMB to create exception
sets for rule sets and then induce a new rule set
from the exception set. We found this process
to be useful when manually performing dis-
covery because inducing rule sets from these
exception sets can fill in the gaps of the “theo-
ry” formed by the initial rule set. An exception

set is created for a rule set by selecting the rule
set’s counterexamples from the training set. Af-
ter creating the exception set, HAMB proposes
an examine-item task to examine the set and a
select-feature-set task that will begin the process
of inducing rules from the exception set.

HAMB’s Background Knowledge: 
Domain- and Problem-Specific 
Knowledge 
Most KDD and machine learning programs are
only capable of using one or two types of back-
ground knowledge. In contrast, HAMB’s heuris-
tics use a wide variety of knowledge, which al-
lows HAMB to use its discoveries to tailor its
choice of tasks to the domain and the database
provided to it for discovery. 

HAMB’s domain- and problem-specific knowl-
edge consists of file and directory pointers, pa-
rameters that control its behavior, simple user
models for estimating the interestingness of
items, and semantic knowledge about the do-
main. This information is provided to HAMB us-
ing a domain theory file. 

Parameters    HAMB was written with flexibility
as one of its primary design principles. There-
fore, it has many parameters that affect its be-
havior: (1) file pointers, such as pointers to the
discovery and testing databases; (2) parameters
controlling the generation of output, such as
the frequency with which reports of discover-
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Tasks Summary

Select-training-set (target attribute) Select a training set from which
rules predicting target attribute will
be induced.

Select-feature-set (target attribute,
training set)

Select a feature set from which rules
predicting target attribute will be
formed.

Select-bias (target attribute, training
set, feature set)

Select a bias for inducing rules
predicting target attribute using hill
climbing. Use cross-validation on
training set to evaluate the biases.

Induce-rule-set (target attribute,
training set, feature set, bias)

Induce a rule set predicting target
attribute using the selected training
set, feature set, and bias.

Create-exception-set (rule set,
training set)

Create an exception set for rule set.

Table 3. An Overview of HAMB’s Tasks for Creating New Items.
Tasks indicates the type of task; summary provides a brief description of the purpose of a task; and calls indicates
which other tasks are proposed while tasks are being performed. Not shown is that examine-item tasks are pro-
posed during initialization.



tallization records from which discovery will
be performed is more interested in attributes
describing the outcomes of the experiments
than attributes describing characteristics of the
macromolecules and also is more interested in
attributes describing characteristics of the
macromolecules than attributes describing the
presence of additives. To model these interests,
three item groups could be defined with utili-
ties of 100, 50, and 25, respectively. 

Domain-Specific Knowledge HAMB’s domain-
specific knowledge can be divided into the fol-
lowing groups: 

First is simple semantic information, such as
potential target attributes and the value used to
denote missing values.

Second is information about uninteresting
attributes and values. This information is used
to avoid the generation and reporting of many
discoveries that are uninteresting because they
use uninteresting attributes and values. Unin-
teresting values can be removed from the fea-
ture set of attributes from which rules are in-
duced, eliminating the induction of many
rules that are uninteresting because they use
uninteresting values. Cases with uninteresting
values for the target attribute are removed from
the training set of cases used to induce the
rules, avoiding the induction of rules predict-
ing uninteresting values. Rules containing
clauses using uninteresting values are eliminat-
ed by HAMB after the rules are induced.

Third is a simple time model of the attri-
butes. This model is used by HAMB to remove
from a feature set of attributes being formed for
a target attribute those attributes whose values
are set after the target attribute’s values have
been set. Thus, HAMB can avoid rules that repre-
sent the “future predicting the past” and gener-
ate a set of rules that is more likely to be causal.

Fourth is known relationships among the at-
tributes and their values. These relationships
are currently used by HAMB to avoid inducing
rules representing relationships that are al-
ready known. We are currently improving
HAMB’s ability to perform more sophisticated
reasoning with these attributes, which will al-
low HAMB to do things such as merging similar
rules or identifying semantically redundant
rules and eliminating them. Both of these ca-
pabilities can allow us to dramatically simplify
induced rule sets. The types of known relation-
ships that can be given to HAMB are detailed in
the following subsection.

Known Relationships among Attributes The
user can provide a variety of known relation-
ships among attributes and their values:

Definitionally related: This one-to-many
relationship indicates the construction of one

ies are printed; (3) parameters controlling the
discovery process, such as the maximum size of
the agenda; and (4) parameters used by the
heuristics, such as similarity threshold, which
HAMB uses to determine that two sets are essen-
tially the same.

Simple User Models for Estimating Interest-
ingness HAMB provides two methods for mod-
eling a user’s preferences: (1) a simple user
model formed by adjusting weights in a hierar-
chical weighted sum that HAMB utilizes to esti-
mate an item’s interestingness, with the adjust-
ed weights indicating the user’s preferences,
and (2) user-defined item groups, a facility for
defining groups of items and assigning utilities
that are attributed to members of the groups.

Simple user model: The hierarchical weight-
ed sum used to estimate an item’s interesting-
ness is evaluated using three levels of abstrac-
tions and normalization. For the sake of
simplicity, the abstraction hierarchies are mostly
uniform. However, the properties and weights
used in the hierarchies for the other item types
vary considerably. This hierarchical weighted
sum is presented in detail in Livingston (2001).

First, the values of the item’s properties are
calculated.

Second, the values of the properties are ab-
stracted using weighted sums. Then, the values
of the abstractions are normalized to fit be-
tween 0 and 100. For example, when estimat-
ing the interestingness of a rule, the properties
PPV, NPV, p-value, rule-set usage ratio, specifici-
ty, and sensitivity are abstracted into empirical
support, with a raw score of 0.18 (2.52 • 0.07)
for semantic simplicity. Compared to the raw
empirical support scores for other rules, this
value is relatively low; after normalization, the
rule’s score for empirical support is low, 12.

Estimated interestingness is computed from
the top-level abstractions using a final normal-
ized weighted sum.

Our results demonstrate that HAMB’s estima-
tion of the interestingness of items is useful in
guiding its discovery process. Moreover, in our
experience, HAMB’s behavior is not sensitive to
minor changes to the weights.

Item groups: To define an item group, the
user provides in the domain theory file a name
for the group, a utility, and a predicate for de-
termining membership in the group. These
groups allow HAMB to factor a user’s a priori in-
terests in groups of items into its estimates of
the items’ interestingness through a special
property, item group utility, which sums the util-
ities of the item groups for which an item is a
member. This property is used in HAMB’s estima-
tion of interestingness. For example, suppose a
user with a set of cases of macromolecule crys-
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attribute from other attributes. For ex-
ample, area would definitionally be
related to length and width.

Translational equivalence: This
one-to-one relationship indicates
when two attributes measure the same
feature but possibly (but not necessar-
ily) using a different scale, such as the
Celsius and Fahrenheit temperature
scales. 

Semantic equivalence: This one-
to-one relationship indicates when
two attributes should have identical
values, such as two gauges that are
used redundantly to ensure that a
valid reading is obtained.

Abstraction: This one-to-one rela-
tionship indicates when the first at-
tribute is an abstraction of the second,
such as the second attribute represent-
ing the presence of a chemical com-
pound and the first attribute repre-
senting the presence of a chemical
grouping to which it belongs, such as
organic or inorganic. 

Discretization: This one-to-one re-
lationship indicates when the first at-
tribute is a discretization of a second
numeric attribute, such as the dis-
cretization of temperature in Fahren-
heit into below zero (< 0), subfreezing
(> = 0 and < 32), subboiling (> = 32 and
< 212), and above boiling (> = 212). 

Known related: This one-to-one re-
lationship indicates when one attribute
is known to be related to a second at-
tribute in a manner not expressible us-
ing the other relationships.

Conclusions
Data from the biological sciences are
so voluminous and growing so rapidly
that many potentially useful discover-
ies are not being made. Computer as-
sistance is already available in the
form of statistical and string-matching
programs, but biological processes and
organisms are often described in terms
of symbolic features that carry consid-
erable semantic content with them. 

The primary conclusion from this
work is that HAMB’s general framework
for discovery can be used with experi-
mental and observational data in sci-
ence to make interesting, novel discov-
eries of utility to laboratory scientists.
An essential component in automat-
ing discovery is providing heuristics

for selecting promising items to ex-
plore, that is, the next task to work on,
because the space of possible items to
explore is so large. The agenda- and
justification-based framework gives us
an explicit means for selecting tasks.
Moreover, it is general enough, as are
the heuristics guiding discovery, to
work with empirical data from a wide
variety of biological and nonbiological
domains. We also believe that the
heuristics that identify interesting dis-
coveries capture many of the expert’s
criteria of interestingness, which were
only made explicit in the context of
the working program.

HAMB’s strengths are (1) the large
number of hypotheses that it examines
as a result of its increased autonomy;
(2) its ability to adapt its behavior to
what it discovers and to select its own
objectives (factoring in the user’s inter-
ests), allowing it to pursue potentially
interesting areas of investigation that
were not expected; and (3) the ability
to use domain- specific knowledge to
aid its discovery process and to avoid
reporting many uninteresting discov-
eries. In addition, HAMB is robust to
noisy and incomplete data. Although
HAMB would be suitable for most data-
mining tasks, HAMB is particularly well
equipped for performing exploratory
analysis of new data where numerous
hypotheses should be explored or
where the learning goals are not well
defined. Because of its ability to use do-
main-specific knowledge to avoid re-
porting many redundant or uninter-
esting discoveries, HAMB would be a
useful tool for analyzing data with re-
dundant attributes and many known
relationships. For example, HAMB is
well suited for gene-expression analy-
sis—researchers would be interested in
relationships involving many of the
genes, gene-expression data are often
noisy, and domain knowledge exists
that HAMB could make use of.

In the problem area of protein crys-
tallography, HAMB has been demon-
strated to find interesting and novel
relationships in published data about
crystal-growing experiments. Some of
these discoveries are rediscoveries in
the sense that they are well known to
crystallographers, just not to the pro-
gram. Some discoveries, however, con-
stitute interesting enough suggestions

for what to do in the laboratory to
promote crystal growth that laborato-
ry resources have been spent on them. 
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Notes
1. Because one of the principals involved in
DENDRAL was Joshua Lederberg, a pioneer in
molecular genetics, we frequently asked
him whether there were questions in biol-
ogy he considered suitable for the AI meth-
ods we had in hand. The MOLGEN project at
Stanford University, begun in the late
1970s, grew from these discussions and was
the first AI project in molecular biology,
specifically for planning gene- cloning ex-
periments (Martin et al. 1977; Stefik 1981a,
1981b). Considerable other work in biology
followed from this context.

2. HAMB is presented in detail in Livingston
(2001) and Livingston, Rosenberg, and
Buchanan (2004, 2001a, 2001b). We review
some of this information here to provide
sufficient detail for readers.

3. All supporting reasons have strengths
greater than zero.

4. We plan to automate this task but have
not yet.

5. A paired t-test is used to test for the sta-
tistical differences in the plots presented in
this article; significance level for rejecting
H0 is p ≤ 0.05. The p-value of the difference
between the entire plots for RANDOM-HAMB

and HAMB is 0.158.

6. Moreover, to conserve time, the complex-
ity of many of the tasks was reduced: for ex-
ample, HAMB uses an iterative cross-valida-
tion process to select a bias to be given to
the rule-induction program. For this study,
only a few bias points were examined using
twofold cross-validation. In addition, the
size of the database used during this study
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was reduced to 500 examples. When more
complex tasks are added, or the size of the
database is increased, we expect that the
improvement in HAMB’s performance over
that of the other versions will increase.

7. Rich Ambrosino first implemented the
Fisher’s exact test to measure p-values asso-
ciated with rules in RL. To make the com-
putation tractable, we approximated the
calculations of factorials using the algo-
rithms in Press et al. (1988).
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