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Adversarial Search

� Shall investigate two uses of search where we can apply other
strategies to search the state space

� In particular we shall investigate adversarial search in which we
search through a space where not all operators (choices) are under our
control

� We shall also briefly discuss constraint satisfaction problems

� Reference:

I Ivan Bratko, Prolog Programming for Artificial Intelligence,
Addison-Wesley, 2001. (Chapter 22)

I Stuart J. Russell and Peter Norvig, Artificial Intelligence: A
Modern Approach, Second Edition, Pearson Education, 2003.
(Chapter 6)
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Adversarial Search

� In many problems — especially game playing — you’re are pitted
against an opponent

� This means that certain operators are beyond your control

� That is, you cannot control your opponent’s moves

� You cannot search the entire space from the outset looking for a
solution since your opponent may make a move which makes any
path you find obsolete

� What you need is a strategy that leads to a winning position regardless
of how your opponent plays
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Overview

� Minimax

� Alpha-Beta Pruning

� Constraint Satisfaction as Search

� Conclusion
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Games as Search Problems

Require the following components:

• initial state — board position plus which player has first move

• operators — legal moves

• terminal test — determines if game is completed

• utility function — numeric value for outcome of game
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Example — Tic-Tac-Toe
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Minimax Criterion

Assume game tree of uniform depth (to simplify matters)

• Generate entire game tree

• Apply utility function to each terminal state

• To determine utility of nodes at any level, if Min’s turn to play it will
choose child with minimum utility, otherwise Max will choose child
with maximum utility

• Continue backing up values from leaf to root, one level at a time

Maximizes utility under assumption that opponent will play perfectly to
minimize it (assuming also opponent has same evaluation function)
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Minimax Example
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Minimax Algorithm

function MinimaxValue(state, game) returns utility value

if TerminalTest[game](state)
then return Utility[game](state)

else if Max is to move in state
then return highest MinimaxValue of successors(state)

else return lowest MinimaxValue of successors(state)
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Alpha-Beta Pruning

� In most games it will be impossible to try and calculate minimax as
described — the game tree will be just too big

� There is however a way of pruning the amount of work to be done
and still make the correct minimax decision

� Pruning — elimination of branches from the search without
examination

� Alpha-beta pruning returns a pruned minimax tree
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Alpha-Beta Pruning

� Idea: Consider node n in search tree such that certain player has a
choice of moving to that node

� If the player has a better choice m either at the parent node of n, or
at any choice point further up, then n will never be reached in actual
play

� Once we have ascertained enough information about n by looking at
some of its successors to reach this decision, we can prune it
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Alpha-Beta Pruning
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Alpha-Beta Pruning

� Minimax is depth-first

� At any point we only have to consider the nodes on a single path in
the search tree

� Suppose α is the value of the best choice for Max on the path and β
the value of the best choice for Min on the path

� Alpha-beta updates the values of α and β and prunes any subtree as
soon as it can determine whether it is worse than the current α or β
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Alpha-Beta Pruning Example
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Alpha-Beta Pruning Algorithm

function MaxValue(state, game, α, β) returns minimax value of state

if CutoffTest(state) then return Eval(state)
for each s in Successors(state) do

α←Max(α,MinValue(s, game, α,β))
if α≥ β then return β

return α

function MinValue(state, game, α, β) returns minimax value of state

if CutoffTest(state) then return Eval(state)
for each s in Successors(state) do

β←Min(β,MaxValue(s, game, α,β))
if β≤ α then return α

return β
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Games of Chance

� Many problems and many games include an element of chance

� For example, the roll of dice (backgammon)

� The game tree must now include chance nodes representing the
element of chance and labelled with the likelihood that the given
chance event will occur

� We must now work with expected values
expectimax(C) = ∑i P(di)maxs∈S(C, di)(utility(s))
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Constraint Satisfaction Problems

� Constraint Satisfaction Problems (CSPs) are problems in which states
are defined by the values taken by a set of variables and the goal test
specifies a set of constraints the values must satisfy

� Problems that can be expressed as CSPs: N-queens, VLSI layout,
scheduling, cryptarithmetic

� Can use search to look for an assignment of values to variables such
that the constraints are satisfied

� CSP has become a powerful and commonly used technique in AI
with its own algorithms for determining variable assignments (e.g.
arc consistency, hill climbing, simulated annealing, etc.)
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Constraint Satisfaction Problems
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Conclusion

� Search is a common technique in problem solving especially when
our knowledge of the problem or domain is limited

� It is important to spend some time thinking about the problem in
order to decide how the problem states will be represented and which
search strategy to apply

� We have only investigated a small number of search techniques

� We have examined some uninformed (blind) and informed (heuristic)
strategies plus some techniques for adversarial search and constraint
satisfaction problems
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