最小 最大推定量과 베이즈 推定量으로서의
 Kalman 필터에 關하여

金 知 坤

最小 最大推定量과 베이즈 推定量으로서의 Kal man 필터에 關하여

金 知 坤
祥明大學校 師範大學 數學敦育科
\title{ On the Kal man Filter as the Bayes Estimator and the M ni nax Estinator }
K mJ ee Con
Departnent of Mathenatical Education Sangnyung Uni versity Seoul 110－743，KCREA

摘要

본 논문은 最小 最大理論과 베이즈 理論을 逐次的으로 使用하여서 最小 最大推定量과 베이즈 推定量 으로서의 離散 Kal man 필터를 誘導하고，推定量의 比較基準인 平均제곱誤差（MSE）에 의하여 이들 두 Kal man 필터의 效率을 比較檢討하였다．

Abstract

In thi s paper we try to derive the di screte Kal nan Filters as the Mnimax estimator and the Bayes esti nat or，by using recursi ve the Mnimax theory and the Bayes theory，and then we conpare and exann ne the efficienci es of these two Kal nan Filters by means of the nean square error（MEE） whi ch is the criterion for comparison of esti nators．

[^0]
1. Introduction

Si nce the introduction in the mid 1950s, the filtering techni ques devel oped by Kal man, and by Kal man and Bucy([6],[7]) have been widely known and widely used in all areas of applied sciences. Starting with applications in aerospace engineering, those include qual ity control, navi gati on and many others. I ndeed, the Kal nan Filter is based on a Bayesi an estimation techni que and many of the resulting methodol ogi es have a Bayesian foundation, thus it is interesting that the theory and nethodol ogy of linear dynannc nodels is not very fanniliar to statisticians. Recently, however statistici ans are begining to st udy the linear dynamic nodel s and use it with sone of the standard stati stical problens([2],[8],[11]). The standard approach for estimating the parameters is to use the equations associated with the Kal man Filter. A good introduction and derivation of the formal as is found in Mei nhol d and Si ngpurwalla ([9]), and Kl ugnan([8]).

The Kal nan filter that will be considered in this paper,is an inference procedure that consists of a linear nodel defined at discrete tines $t=1,2,3, \ldots$ and a stochastic linear rel ati on bet ween the unknown paraneters at timet+1 and at t. Thus we follow the following st eps ; at first given initial prior nean and variance using the stochastic linear relati on above the I inear Bayes estimator(BE) and the Mninax-I inear esti nator (MLE) are obtai ned at $t=1$, at second from the stochastic li near relation above the updated dispersion is obtained, at third the I inear BE, the MLE and the updated di spersi on in second step serve as a new pri or nean and di spersion, at fourth using the new prior nean and di spersi on the linear BE and the MLE are obtai ned agai n, fi nally we will repeate these processes.

The aimof this paper is to derive the nini max and the Bayes versions of the Kal man Filter by using recursi ve the nost general paranetric of estimators fromboth the Bayes estimator(BE) and the mini nax estimat or (MLE), and then compare, and examnes the effici encies of these tho Kal man Filters. This paper is divided into three parts. The first part(Section 2) summarizes the general results of the $B E$ and the MLE which have include only materials rather di rectly rel evant to our di scussi ons in the sequel. The second part (Section 3) formol ates the Kal man Filters as the BE and the MLE by using recussi ve the nost gener al paranetric formof the BE and the MLE. The third part(Section 4) compares and exann nes the efficienci es of these two Kal man Filters by neans of MSE(the nean square error) which is the criterion for the comparison.

2. The general results of the MILE and the BE

In this section, we will sunmarize the well known results of the MLE and the BE which have i ncl uded only naterials rather di rectly rel evant to our discussions in the sequel. Mnimax estimation in linear nodel s has recently recei ved attention in statistical literature. If one has prior information on the unknown paraneter vector buch that may be assuned tolie in a concentration ellipsoid, the resulting unbi ased the MLE has the sane form of the BE. A fairly extensive discussion of the problens of minimx-estimation can be found in Rao([10]) and Tout enburg([12]).

Nbw consi der I i near nodel (an observati on equation),

$$
\begin{equation*}
Y=X b+\varepsilon, \tag{2.1}
\end{equation*}
$$

where the natrix X is a known $n \times m$ nat rix of rank $s<m$, the unknown paraneter is an m di nensi onal vector, and Y and ε are n di nensi onal random variables. Assune that is a randomvari able with known pri or nean and known di spersi on gi ven by

$$
\begin{equation*}
E(\text { B })=\theta \quad \text { and } \quad D(\text { B })=F_{m}, \tag{2.2}
\end{equation*}
$$

and assune that

$$
\begin{equation*}
E(\varepsilon \mid \text { b })=0 \quad \text { and } \quad D(\varepsilon \mid \text { B })=\mathrm{Q}^{2} I \tag{2.3}
\end{equation*}
$$

where I denotes an appropriate identity matrix. Let the paraneter space,

$$
\begin{equation*}
\bar{\delta}=\left\{b:(b-\theta)^{\prime} G(b-\theta)<1\right\} \tag{2.4}
\end{equation*}
$$

where G is a positive definite(PD) natrix. Consider a linear estimat or of the paranetric form

$$
\begin{equation*}
P^{\prime} \varliminf_{0}=P^{\prime} \theta+L^{\prime}(Y-X \theta), \tag{2.5}
\end{equation*}
$$

where the synbol e(.)' neans the transposition of (.). The risk or MSE of P^{\prime} is

$$
\begin{align*}
\operatorname{MSE}\left(P^{\prime}\right) & =P^{\prime} E(6)(6) P \\
& =E\left[P^{\prime}(\theta-b)+L^{\prime}(Y-X \theta)\right]\left[(\theta-B)^{\prime} P+\left(Y^{\prime}-\theta^{\prime} X^{\prime}\right) L\right] \\
& =\left(L^{\prime} X-P^{\prime}\right)(B-\theta)(B-\theta)^{\prime}\left(X^{\prime} L-P\right)+\mathrm{o}^{2} L^{\prime} L, \tag{2.6}\\
& \left(\therefore \operatorname{MSE}(\mathrm{~B})=\operatorname{Variance}(\mathrm{B})+(B \text { ias in })^{2}\right) .
\end{align*}
$$

On the ellipsoid (2.4) or equi val ently

$$
\begin{equation*}
(B-\theta)(B-\theta)^{\prime}<G^{-1}=F_{m} \tag{2.7}
\end{equation*}
$$

the naxi nom of (2.6) is

$$
\begin{equation*}
\operatorname{MSE}\left(P^{\prime}\right)=\left(L^{\prime} X-P^{\prime}\right) F_{m}\left(X^{\prime} L-P\right)+Q^{2} L^{\prime} L \tag{2.8}
\end{equation*}
$$

Differentiating with respect to L, let the result be equal to zero,

$$
\begin{equation*}
\frac{9}{9} L \operatorname{MSE}\left(P^{\prime}\right)=2 X F_{m} X^{\prime} L-2 P^{\prime} F_{m} X^{\prime}+2 L \mathrm{Q}^{2}=0 \tag{2.9}
\end{equation*}
$$

Thus, si nce $X F_{m} X^{\prime}$ is a non-negati ve definite(ND) natrix, the expression in (2.9) is mini nnzed when

$$
\begin{equation*}
L^{\prime}=P^{\prime} F_{m} X^{\prime}\left(X F_{m} X^{\prime}+Q^{2} I\right)^{-1} \tag{2.10}
\end{equation*}
$$

Thus, substituting (2.10) into (2.5) the MLE is given by

$$
\begin{equation*}
P^{\prime} \mathbb{8}_{m}=P^{\prime} \theta+P^{\prime} F_{m} X^{\prime}\left(X F_{m} X^{\prime}+\mathrm{Q}^{2} I\right)^{-1}(Y-X \theta) . \tag{2.11}
\end{equation*}
$$

Next the BE under the assumptions of (2.1), (2.3) and $E(B)=\theta, D(B)=F_{b}$ is gi ven by the I enma $3.1 \mathrm{inJ.G.Kin}[4]$). We have this by the following I enmar.

Lenma 2. 1 The general paranetric form of the $B E$ rel ative to the assumptions in (2.1), (2.3) and $E(\mathrm{~B})=\theta, D(\mathrm{~B})=F_{b}$ is gi ven by

$$
\begin{equation*}
P^{\prime} \overleftarrow{छ}_{b}=P^{\prime} \theta+P^{\prime} F_{b} X^{\prime}\left(X F_{b} X^{\prime}+\mathrm{Q}^{2} I\right)^{-1}(Y-X \theta) . \tag{2.12}
\end{equation*}
$$

V\& observe that the MLE (2.11) and the BE (2.12) were each obtai ned by sol ving a different optinnzation problem However the forms of the MLE and the BE are exactly the sane if $D($ b $)=F_{m}=F_{b}$.

The criterian for conparison of estinators will usually be the mean square error (MSE). With respect to a natrix loss function the MSE is the natrix
where is an estimator of unknown paraneter . It was shown that more precise prior infornation led to an estinat or with smaller average MSE in the theorem4.2 in J. GKint[5]). We take this result as the following theoremwith rewritting form

Theorem 2.2 Suppose that $F_{m}-F_{b}$ is non- negative definite. Let P_{b} be the BE associated with prior nean θ and di spersion F_{b}. Let P^{\prime} be the MLE associ ated with prior nean θ and di spersion F_{m}. Then

$$
\begin{equation*}
\operatorname{MSE}\left(P^{\prime} \widehat{छ}_{b}\right)<M S E\left(P^{\prime} \widehat{छ}_{m}\right) . \tag{2.14}
\end{equation*}
$$

Hence we see that if $F_{m}<F_{b}$, then

$$
\begin{align*}
\operatorname{MSE}\left(P^{\prime} \widetilde{\mathbb{Z}_{b}}\right) & =P^{\prime} F_{b} P-P^{\prime} F_{b} X^{\prime}\left(X F_{b} X^{\prime}+\mathbb{Q}^{2} I\right)^{-1} X F_{b} \\
& <P^{\prime} F_{m} P-P^{\prime} F_{m} X^{\prime}\left(X F_{m} X^{\prime}+\mathbb{Q}^{2} I\right)^{-1} X F_{m}=\operatorname{MSE}\left(P^{\prime} \mathbb{母}_{m}^{\prime}\right) . \tag{2.15}
\end{align*}
$$

3. The Kalman Filters as the MILE and the BE

In this section, in the light of the iterative procedure in the previ ous section we will now derive the nathenati cal presentation of Kal man Filters as the MLE and the BE by using the results of the section 2. For discrete tine points $t=0,1,2,3 \ldots$, consi der a linear nodel (an observati on equati on) ([1]),

$$
\begin{equation*}
Y(t)=X(t) B(t)+E_{(t),}, \tag{3.1}
\end{equation*}
$$

where $Y(t)$ is an n di nensional vector of observation, $X(t)$ a fixed nonrandom $n \times m$ natrix(or desi gn natrix) of rank $s(t)<m, \quad(t)$ an m di nensional random vector of unknown paraneter (or the state of the systemat tinet), $\varepsilon_{(t)}$ an n dinensional observation error vector. The error vector $\xi_{(t)}$ satisfies

$$
\begin{equation*}
E\left(E_{(}(t) \mid B(t)\right)=0 \quad \text { and }, D(E(t) \mid B(t))=\mathrm{Q}_{E}^{2}(t) I, \tag{3.2}
\end{equation*}
$$

where the syntbol $\mathrm{s} E$ and D denote respectively the mean and the di spersion of (.), and I denotes the appropriate identity matrix. The $B(t)$ are random variables and thus the dynanic feat ure, that is, the stochastic linear rel ationship bet ween $B(t)$ and $B(t-1)$ is given by the syst emequati on,

$$
\begin{equation*}
B(t)=M(t) B(t-1)+V(t) \quad(t=1,2,3, \ldots), \tag{3.3}
\end{equation*}
$$

where $M(t)$ is an $m \times m$ nonrandom system transition natrix and $V(t)$ is an m dimensi onal systemerror vector satisfying,

$$
\begin{equation*}
E(V(t) \mid B(t))=0 \quad \text { and } \quad D(V(t) \mid B(t))=\mathbb{Q}_{w}^{2}(t) I . \tag{3.4}
\end{equation*}
$$

The vector $V(t)$ and vector $\mathbb{Q}^{2}(t) I$ are vector white noi se;

$$
E\left(V(t), V^{\prime}(\mathrm{s})\right)=\left\{\begin{array}{ll}
\mathrm{Q}_{w}^{2}(t) & \text { for } t=\mathrm{s} \tag{3.5}\\
0 & \text { otherwise }
\end{array} \text { and } E\left(\mathrm{E}_{(}(t), \mathrm{E}^{\prime}(\mathrm{s})\right)=\left\{\begin{array}{ll}
\mathrm{Q}_{\varepsilon}^{2}(t) & \text { for } t=\mathrm{s} \\
0 & \text { otherwise }
\end{array} .\right.\right.
$$

The di sturbances $V(t)$ and $\mathrm{Q}^{2}(t) I$ are assuned to be uncorrel ated at all logs;

$$
\begin{equation*}
E\left(V(t), \varepsilon^{\prime}(t)\right)=0 \quad \text { for all } t \text { and } s, \tag{3.6}
\end{equation*}
$$

and al so we assume that $\quad(t)$ and $Y(t)$ are uncorrel ated with any realization of $V(t)$ or $\mathbb{Q}^{2}(t) I$,

$$
\begin{equation*}
E\left(V(t), \bigotimes^{\prime}(t)\right)=0, \quad E\left(\mathbb{Q}(t) I, \bigotimes^{\prime}(t)\right)=0 \quad \text { and } \quad E\left(V(t), Y^{\prime}(t)\right)=0 \tag{3.7}
\end{equation*}
$$

for $t=1,2,3 \ldots$. For $t=0$ let the prior assumption be

$$
\begin{equation*}
E(B(0))=\theta \text { and } D(B(0))=F_{m}(0) \tag{3.8}
\end{equation*}
$$

where θ and $F_{m}(0)$ are the initial val ues of an m dimensional vector and $m \times m$ PD matrix. From(3.3) notice that

$$
\begin{equation*}
E(\forall(1) \mid Y(0))=M(1) \theta \text { and } D(\not)(1) \mid Y(0))=M(1) F_{m}(0) M^{\prime}(1)+Q_{w}^{2}(1), \tag{3.9}
\end{equation*}
$$

where the synbol e "' " neans the transposition. Let

$$
\begin{equation*}
\theta(1)=M(1) \theta \text { and } F_{m}(1)=M(1) F_{m}(0) M^{\prime}(1)+Q_{w}^{2}(1) . \tag{3.10}
\end{equation*}
$$

This is the new prior nean and di spersion. Nowlet the paraneter space at tinet=1 be

$$
\begin{equation*}
Z(1)=\left\{\forall(1):(B(1)-M(1) \theta)(B(1)-M(1) \theta)^{\prime}<G^{+}(1)=F_{m}(1)\right\}, \tag{3.11}
\end{equation*}
$$

where $G^{+}(1)$ is PD. Foll owing the nethod of section 2, a linear esti nator of the paraneteric form $\quad P^{\prime}(1)=P^{\prime} \theta+L^{\prime}(1)(Y(1)-X \theta)$
is consi dered. At the first step, the naxi nom MSE of (3.12) on el lipsoid (3.11) is obtai ned in terns of $L(1)$, and at the second step, the $L(1)$ that minimize the val ue of the expressi on obtai ned in the first step is found, and at final step the optimmestimator is obtai ned. Nbw, for $\quad \theta(2)=M(2) \quad$ and
$D(b) \mid Y(1))=E[(2)-E(2))][\nmid(2)-E(2))]^{\prime}$
$=E[M(2)(1)+V(2)-M(2)(1)][M(2)+V(1)+V(2)-M(2)]^{\prime}$
$\left.=M(2) E[(1)-(1))(1)-(1))^{\prime}\right](2)+E\left(V(2) V^{\prime}(2)\right)$
$=M(2) P(1 \mid 1) M^{\prime}(2)+\mathrm{Q}_{w}^{2}(2)=F_{m}(2)$,
where, on $\bar{O}(1)$

$$
\begin{aligned}
& \left.P(1 \mid 1)=\max E_{6}[(B(1)-(1))(B(1)-1))^{\prime}\right] \\
& =F_{m}(1)-F_{m}(1) X^{\prime}(1)\left(X(1) F_{m}(1) X^{\prime}(1)+0_{\varepsilon}^{2}(1) I\right)^{-1} X(1) F_{m}(1) \text {, }
\end{aligned}
$$

the optinmesti mator is obt ai ned again. At the t^{\prime} th step l et
where

$$
\begin{equation*}
F(t)=M(t) P(t-1 \mid t-1) M^{\prime}(t)+\mathrm{Q}_{w}^{2}(t) \tag{3.13}
\end{equation*}
$$

and, on $\overline{\mathrm{Z}}(t-1)$ ([3]) ,

$$
\begin{align*}
& \left.\left.P(t-1 \mid t-1)=\max E_{8}[(t-1)-1(t-1))(t-1)-1(t-1)\right)^{\prime}\right] \\
& =F_{m}(t-1)-F_{m}(t-1) X^{\prime}(t-1)\left(X(t-1) F_{m}(t-1) X^{\prime}(t-1)+Q_{E}^{2}(t-1) I\right)^{-1} X(t-1) F_{m}(t-1) . \tag{3.15}
\end{align*}
$$

From(2.6) the Iinear estinator of the paraneteric form

$$
\begin{equation*}
P^{\prime}(t)=P^{\prime} M(t)(t-1)+L^{\prime}(t)(Y(t)-X(t) M(t) \tag{3.16}
\end{equation*}
$$

has MEE of $P^{\prime}(t)$ with
$\left.\left.\operatorname{MSE}\left(P^{\prime}(t)\right)=P^{\prime} E_{8}[(t)-(t))(t)-\right)^{\prime}\right] P$
$=\left(L^{\prime}(t) X(t)-P^{\prime}\right)(\forall(t)-M(t)(t-1))(G(t)-M(t) G(t-1))^{\prime}\left(X^{\prime}(t) L(t)-P\right)+Q^{2}(t) L^{\prime}(t) L(t)$.

Its naxi numon $\bar{Z}(t)$ is

$$
\begin{equation*}
\operatorname{MSE}\left(P^{\prime}(t)\right)=\left(L^{\prime}(t) X(t)-P^{\prime}\right) F_{m}(t)\left(X^{\prime}(t) L(t)-P\right)+\mathrm{o}_{E}^{2}(t) L^{\prime}(t) L(t) \tag{3.18}
\end{equation*}
$$

Differentiating with respect to $L(t)$, let the result be equal to zero ;

$$
\begin{equation*}
\frac{9}{9 L} \overline{(t)} \operatorname{MSE}\left(P^{\prime}(t)\right)=2 X(t) F_{m}(t) X^{\prime}(t) L(t)-2 P^{\prime} F_{m}(t) X^{\prime}(t)+2 L(t) \mathrm{Q}_{\mathrm{E}}^{2}(t)=0 . \tag{3.19}
\end{equation*}
$$

Thus, si nce $X(t) F_{m}(t) X^{\prime}(t)$ is ND, the expression in (3.19) is minimzed if

$$
\begin{equation*}
L^{\prime}(t)=P^{\prime} F_{m}(t) X^{\prime}(t)\left(X(t) F_{m}(t) X^{\prime}(t)+{\left.\mathbb{O}_{E}^{2}(t) I\right)^{-1} . . . ~}_{\text {. }}\right. \tag{3.20}
\end{equation*}
$$

Thus, from(3.16) and (3.20) the resulting minimx versi on of the Kal nan Filter is

$$
\begin{equation*}
P^{\prime}(t)=P^{\prime} M(t)(t-1)+P^{\prime} F_{m}(t) X^{\prime}(t)\left(X(t) F_{m}(t) X^{\prime}(t)+Q_{E}^{2}(t) I\right)^{-1}(Y(t)-X(t) M(t)(t-1)) . \tag{3.21}
\end{equation*}
$$

Si milarly, for $t=0$ let the prior assunptions be

$$
\begin{equation*}
E(b(0))=\theta \quad \text { and } \quad D\left(b(0)=F_{b}(0)\right. \tag{3.22}
\end{equation*}
$$

where θ and $F(0)$ be the initial val ues of $m \times m$ PD natrix. From(3.3) noti ce that

$$
\begin{equation*}
E(B(1) \mid Y(0))=M(1) \theta \quad \text { and } \quad D(B(1) \mid Y(0))=M(1) F_{b}(0) M^{\prime}(1)+{Q_{w}^{2}(1)}_{2} . \tag{3.23}
\end{equation*}
$$

Thus, from(2.12) we have

$$
\begin{equation*}
P^{\prime}(1)=P^{\prime} M(1) \theta+P^{\prime} F_{b}(1) X^{\prime}(1)\left(X(1) F_{b}(1) X^{\prime}(1)+\mathrm{Q}_{E}^{2}(1)\right)^{-1}(Y(1)-X(1) M(1) \theta) . \tag{3.24}
\end{equation*}
$$

The $P^{\prime}(2)$ is obt ai ned for the pri or assunptions

$$
\begin{equation*}
\theta(2)=M(2) \quad \text { and } \quad F(2)=M(2) P(1 \mid 1) M^{\prime}(2)+\mathrm{Q}_{w}^{2}(2) \text {, } \tag{3.25}
\end{equation*}
$$

where ([3])

$$
\begin{align*}
P(1 \mid 1) & =E\left[(b(1)-(1))(B(1)-(1))^{\prime}\right] \\
& =F_{b}(1)-F_{b}(1) X^{\prime}(1)\left(X(1) F_{b}(1) X^{\prime}(1)+Q_{E}^{2}(1) I\right)^{-1} X(1) F_{b}(1) . \tag{3.26}
\end{align*}
$$

Once $P^{\prime \prime}(t-1)$ is obtai ned, $P^{\prime \prime}(t)$ is the BE for the prior assunptions with
$E(t) \mid Y(t-1))=M(t)(t-1)$ and $D(t) \mid Y(t-1))=M(t) P(t-1 \mid t-1) M^{\prime}(t)+Q_{w}^{2}(t)$, (3.27) where

$$
\begin{align*}
P(t-1 \mid t-1)= & F_{b}(t-1)-F_{b}(t-1) X^{\prime}(t-1)\left(X(t-1) F_{b}(t-1) X^{\prime}(t-1)\right. \\
& \left.+Q_{E}^{2}(t-1) I\right)^{-1} X(t-1) F_{b}(t-1), \tag{3.28}
\end{align*}
$$

Thus the resulting Bayes versi on of the Kal man Filter is gi ven by

$$
\begin{equation*}
P^{\prime} \widetilde{\sigma}_{b}(t)=P^{\prime} M(t)(t-1)+P^{\prime} F_{b}(t) X^{\prime}(t)\left(X(t) F_{b}(t) X^{\prime}(t)+Q_{E}^{2}(t) I\right)^{-1}(Y(t)-X(t) M(t)(t-1)) . \tag{3.29}
\end{equation*}
$$

The above deri vations show how the Kal nan Filters consist of an iterative MLE or BE where each iteration provides the prior inf or nation for the next step. The coefficient natrix in (3.21) or in(3.29) is known as the gain matrix and is denoted respectively,

$$
\begin{equation*}
K_{m}(t)=F_{m}(t) X^{\prime}(t)\left(X(t) F_{m}(t) X^{\prime}(t)+\mathbb{Q}_{E}^{2}(t) I\right)^{-1} \quad, \quad K_{b}(t)=F_{b}(t) X^{\prime}(t)\left(X(t) F_{b}(t) X^{\prime}(t)+\mathbb{Q}_{E}^{2}(t) I\right)^{-1} \tag{3.30}
\end{equation*}
$$

Equations (3.21) and (3.29) al ong with the definitions of $K_{m}(t)$ and $K_{b}(t)$ in (3.30) will produce respecti vel y

$$
\begin{equation*}
P^{\prime}(t)=P^{\prime} M(t)(t-1)+P^{\prime} K_{m}(t)(Y(t)-X(t) M(t)(t-1) \tag{3.31}
\end{equation*}
$$

and

$$
\begin{equation*}
P^{\prime} \widehat{豸}_{b}(t)=P^{\prime} M(t)(t-1)+P^{\prime} K_{b}(t)(Y(t)-X(t) M(t)(t-1)) . \tag{3.32}
\end{equation*}
$$

4. The Comparison of Efficiencies of two Kalman Filters

In section 2 theorem 2.2 shous that nore preci se prior infornation led to an estimat or with snaller aver age MSE. In this section we will now show that for the Kal nan Filter nore preci se initial prior infornation gives an estimator with a snaller MSE for each val ue of time t. Thus consi der tho Kal man Filters where the initial prior infornation is of the form

$$
\begin{array}{lll}
E(B(0))=\theta & \text { and } & D(B(0))=F_{m}(0) \\
E(\forall(0))=\theta & \text { and } & D(B(0))=F_{b}(0) . \tag{4.2}
\end{array}
$$

Let $P^{\prime} \widehat{\sigma}_{m}(t)$ be the M LE associ at ed with the initial prior infornation (4.1), derived at that t^{\prime} th stage. Let $P^{\prime} \widetilde{\sigma}_{b}(t)$ be the BE associated with the initial prior information (4.2), deri ved at that t^{\prime} th stage. Then

In order to prove (4.3) we use nathenati cal induction and theorem 2.2. By theorem 2.2 and (2.15), the result is true for $t=1$;

$$
\begin{align*}
\operatorname{MSE}\left(P^{\prime} \widetilde{\sigma}_{b}(1)\right) & =P^{\prime} F_{b}(1)-P^{\prime} F_{b}(1)\left(X(1) F_{b}(1) X^{\prime}(1)+\mathrm{Q}_{E=}^{2}(1) I\right)^{-1} X(1) F_{b}(1) \\
& <P^{\prime} F_{m}(1)-P^{\prime} F_{m}(1)\left(X(1) F_{m}(1) X^{\prime}(1)+{Q_{E}^{2}}_{2}(1) I\right)^{-1} X(1) F_{m}(1) \tag{4.4}\\
& =\operatorname{MSE}\left(P^{\prime}{\widetilde{Q_{m}}}(1)\right) .
\end{align*}
$$

Assune that it hol ds true for $\mathrm{t}=t$;

$$
\begin{equation*}
\operatorname{MSE}\left(P^{\prime} \widehat{\bar{母}}_{b}(t)\right)<\operatorname{MSE}\left(P^{\prime} \widehat{\mathrm{G}}_{m}(t)\right) . \tag{4.5}
\end{equation*}
$$

Now

$$
\begin{align*}
F_{b}(t+1) & =M(t+1) M S E\left[P^{\prime} \widetilde{\nabla}_{b}(t)\right] M^{\prime}(t+1)+\mathrm{Q}_{w}^{2}(t+1) \\
& <M(t+1) M S E\left[P^{\prime} \widetilde{\nabla}_{m}(t)\right] M^{\prime}(t+1)+\mathrm{Q}_{w}^{2}(t+1)=F_{m}(t+1), \tag{4.6}
\end{align*}
$$

and

$$
\begin{align*}
F_{b}(t+2) & =M(t+2) M S E\left[P^{\prime} \widehat{\nabla}_{b}(t+1)\right] M^{\prime}(t+2)+\mathrm{Q}_{w}^{2}(t+2) \\
& <M(t+2) M S E\left[P^{\prime} \widehat{\nabla}_{m}(t+1)\right] M^{\prime}(t+2)+\mathrm{Q}_{w}^{2}(t+2)=F_{m}(t+2), \tag{4.7}
\end{align*}
$$

at stage $t+1$, fromtheorem2.2,

$$
\begin{equation*}
\operatorname{MSE}\left(P^{\prime} \widehat{\mathrm{G}}_{b}(t+1)\right)<\operatorname{MSE}\left(P^{\prime} \widehat{\mathrm{G}}_{m}(t+1)\right) \tag{4.8}
\end{equation*}
$$

Thi s conpl etes the proof of (4.3). From(4.3) he ar ri ve at the following concl usi ons ;

$$
\begin{align*}
& F_{b}(0)<F_{m}(0) \quad \Rightarrow \quad \operatorname{MSE}\left(P^{\prime} \overleftarrow{\sigma}_{b}(t)\right)<\operatorname{MSE}\left(P^{\prime} \widetilde{\sigma}_{m}(t)\right) \\
& F_{b}(0)=F_{m}(0) \quad \Rightarrow \quad \operatorname{MSE}\left(P^{\prime} \overleftarrow{\sigma}_{b}(t)\right)=\operatorname{MSE}\left(P^{\prime} \widetilde{\sigma}_{m}(t)\right) \tag{4.9}\\
& F_{b}(0)>F_{m}(0) \quad \Rightarrow \quad \operatorname{MSE}\left(P^{\prime} \widetilde{\sigma}_{b}(t)\right)>\operatorname{MSE}\left(P^{\prime} \square_{m}(t)\right) .
\end{align*}
$$

REFERENCES

1. Broenel ing, L. D. (1985), "Bayesi an anal ysi s of I i near nodel s", Marcel Dekker, Inc.
2. Diderich, G T. (1985), "The Kal man Filter fromthe perspective of Godberger-Theil estinators" , The Anerican statistici an , 39(13), pp. 193-198.
3. Hannilton, J.D. (1994), "Tine seri es anal ysi s", Princet on Uni versity Press, Pri nceton, New J ersey.
4. Jee Gon, K (1996), "A conparative Study on the estimators of Bayes and the generalized ri dge", The Institute of Nat ural Sci ence Sangnyung Uni. , Vol. 3, pp. 159-169.
5. Jee Gon, K. (1995), "A conparative Study on the Bayes and Enpi ri cal Bayes inference", The Insti tute of Basi c Sci ence Sangnyung Uni . Vol. 8, pp. 87-96.
6. Kal man, RE. (1960), "A new approach to li near filtering and predi ction problens", Jour nal of Basi c Engi neering, 82, pp. 34-45.
7. Kal man, R.E. and Bucy, R S. (1961), "New results in I inear filtering and Predi ction", Journal of Basi c Engi neering, 83, pp. 95-108.
8. Kl ugman, S. A (1992), "Bayesi an statistic in Actuarial sci ence with Enphasi s on credi bility", K uner Acadenin c publ i shers.
9. Mei nhol d, RJ. and Si ngpurwal I a, N. D. (1983), "Underst anding the Kal man Filter", The Aneri can stati stici an, 37(2), pp. 123-127.
10. Rao, C.R.(1976), "The 1975 wal d nenorial lectures. Estimation of paraneters in a linear nodel ", Ann. Statist. 4, pp 1023-1037.
11. Sorenson, HW(1970), "Least squares estination : from Gauss to Kal nan", Kal man Filtering Theory and Appl i cation, Edited by H W Sorenson. I EEE Press, New york.
12. Toutenburg, H (1982), "Pri or infornati on in I inear nodel s", John Wil ey and Sons.

[^0]: ＊본 연구는 1998학년도 상명대학교 자연과학연구소 연구지원비에 의하여 수행되었음．

