Problem Solving and Reasoning



Rule-Based System (Production System)

A 4

Workin Rule Base
J (Production
Merpory rules)

C, : condition
A, : Action
R: : rule or production

eLoop continues until working patterns no longer matches the
condition of any rules



e PS
— rule base (production memory, long term memory)
— working memory (shorter term memory)
— Interpreter (controller)
< rule >
If condition 1, then action 1
If condition 1, then action 1

rule working memory



PS
1. Separation of knowledge & control

2. Modularity

%
*

3. Uniformity

4. Naturalness

( )

N situation

Modularity



PS

—forward chaining
—backward chaining

O m >
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Matching Matchi
Exrc

Exrc
F&B > Z F&B > Z
C&D-—>F C&D-—>F
A—>D A—->D

A C
E H
G B
F D Z
Matchi
atcngXrC
F&B > Z A—>D
C&D—>F
A D C

< Forward chaining example >




e If problem is to see “Z” is true or not,
<« Backward chaining is better.
e Z Z

. < more efficient!
R
F S —

(cr Z

? Backward chaining vs. Abduction




« Backward chaining abduction

— backward chaining A—B B true

, A true
(A—->B &A) -»B

— abduction : (A ->B & B) >A
 Working memory size memory

— > MYCIN context tree
prospector semantic net
— production rule grouping



< Production system >

/
X (conflict resolution)
match *> selection > execute
\ 1 rule match
working memory fact conflict resolution

production rule
condition part (fowarding
chaining)

—~—

action part(backward
chaining)



e Conflict Resolution

— Specify ordering :

— Rule ordering : rule base

— Data ordering : priority

— Recency ordering : (rule) (

)

— Context limiting : grouping



« (ex)
production rule :
1. ba > ab
2. ca— ac
3.cb — bc

Iteration WM

0) cbaca
cabca
acbca
acbac
acabc
aacbc
aabcc

O 01l WN P

Matching — Conflict Resolution — execution

(interpreter )

conflict set
1,2,3

2

3,2

1,3

2

3

0)

rule fired

W NEFEDNDNPEP

stop



 Matching complexity
— working memory : w elements
— production rules : r
— # of elements in condition part : n
— # of cycles for solving problem : c
— total # of match (unification) = wrnc

— simpler expert system : w =100
r =200 — 100M
n=>5
c = 1000



 rule-based system ( )

rule (structuring)
(ordering)
—p&gé&tr....... —> S
( check ) confirm
fall
fail rule  AND
check

— easier check first
more likely fail first



Rule 1 : if

Rule 3 : if

Rule 2 : if

the engine is getting gas, and
the engine will turn over,

then

the problem is spark plugs.

Rule 4 : if
the engine does not turn over,
and
the lights do come on
then
the problem is the starter motor.

the engine does not tu
and
the lights do not come
then
the problem is battery

there is gas in the fue
and
there is gas in the car
then
the engine is getting «



Working memory

'

Production rules

Rule 1

Rule 2
the problem is X Rule 3

Rule 4

Figure 8.6 The production system at the start of a
consultation in the car diagnostic example.



the problem is X

%\

Rule 1: Rule 2 : Rule 3 :
the problem is the problem is battery the problem is
spark plugs or cable the starter moter

S PN

the engine is | | the engine | | the engine | | the lights | | the engine the lights

getting gas will turn does not do not does not do come
\ over turn over come on turn over on
Rule 4 :
the engine is
getting gas

Figure 8.9 And/Or graph searched
In the car diagnhostic

gas in fuel tank gas in carburetor




Working memory

'

Production rules

the engine is

getting gas Rule 1
Rule 2

the engine will Rule 3
turn over Rule 4

the problem is
spark plugs

A

Figure 8.7 The production system after Rule 1 has fired.



Working memory

gas in fuel tank

'
gas in carburetor Production rules
the engine is Rule 1
getting gas Rule 2
o Rule 3
the engine will turn
over Rule 4

the problem is
spark plugs

A

Figure 8.8 The production system after Rule 4 has fired.



(ex) “IDENTIFIER” 7 )

(Cheetah, tiger, giraffe, zebra, ostrich, penguin, albatross)

R1 : If animal has hair
then it is a mammal

R2 : If animal gives milk
then it iIs a mammal

R3 : If animal has feathers
then it is a bird

R4 : If animal flies

Mammal or bird

R5 : If animal is a mammal

then it is a carnivore




R6

R7

R8

R9

: If animal is a mammal

and it has pointed teeth
and it has claws
and it eyes pointed forward

then it iIs a carnivore

: If animal is a mammal

and it has hoofs
then it iIs an unqulate

: If animal is a mammal

and it chew cud
then it is an ungulate
and it is even-toed

. If animal I1s a carnivore

and it has a tawny color
and it has dark spots
then it is a cheetah

Carnivore

Ungulate

Carnivore



R10 : If animal is a carnivore
and it has a tawny color
and it has black stripes
then it is a tiger

R11 : If animal is an ungulate
and it has long legs
and it has a long neck

and it has a tawny color
and it has dark spots
then it is a giraffe

R12 : If animal is an ungulate
and it has a white color
and it has black stripes
then it is a zebra

Ungulate



R13 : If animal is a bird
and it does not fly
and it has long legs
and it has a long neck
and it is black and white
then it is an ostrich

R14 : If animal is a bird
and it does not fly bird
and it swims
and it is black and white
then it is a penguin

R15 : If animal is a bird
and it is a good flyer
then it is an albatross




 Now the following has been observed.

1. Tawny color & dark spots. - ?R;, ?Rq;
2. Gives a milk & chews its cud. R,,Rg
3. long legs & log neck. - Ry,

The animal is giraffe.



1. ? (why)
2. ? (how)

e ANnswer
— for why : forward
— for how : backward

mammal
—»_/'

canivore
— V‘/




< Inference Net >

— Even toed
Gives milk Mamma' I

A 4

chew cud <N 1 Yngulate
7 g
ong fegs > =D Giraffe
long neck
tawny color
dark spots
Giraffe
dark spots
Even toed Ungulate longlegs long neck — tawny color

=

Mammal chew cud < AND/OR Graph >

|

Give milk



o(H, £y PEIHIP(H)
> (P(EIHP(H,)

« P(H,|E) : Prob. that H; true given evidence E

« P(H,) : Prob. that H true overall

 P(E|H,) : Prob. of observing evidence E when H; true
n : number of possible hypotheses

n
P(E) = z P(E[H,)P(H,)
k=1
< Bayestheorem>
P(A|B)P(B) = P(A,B)
P(B|A)P(A) =P(B, A
. P(A|B)P(B)=P(B|A)P(A)
P(B|A)P(A)
P(B)

P(A|B) =



 Bayes’ rule : known fact —» unknown fact probability

P(XTY)P(Y)=P(Y | X)P(X)
P(Y 1 X)

P(X 1Y) = P(Y)

P(X) :
P(Y) :
P(X]Y) :
P(Y|X) :

eg.

P(X)=0.1

P(Y)=03 P(Y|X)=09
01x09 009 3

P(X|Y)= = =—=
(X1Y) 0.3 0.30 10

0.3




< Cause-Symptom(effect) relation >

(Evidence)

(effect)
Symptoml

(Hypothesis)
S2

causel
S3

N

cause2 s4

cause3 =9

S6

S7




Two major problems of Bayesian

« All relations of evidences are independent.

 Adding new hypotheses and evidences, it is
necessary to rebuild probability tables.

P(E|H;)P(H;)

P(Hi | E) — 5
Z(P(EIHK)P(Hk))



Bayes theorem >
Multiple evidence case

oy 1 X.y) = PO E)P(Y | E)
P(X|E)
P(Z | X.Y) = P(X,Y|Z)P(2) _ P(X|Z2)P(Y|2)P(2)

P(X,Y) P(X,Y)
=a(P(2)P(X|2)P(Y|2)

If P(X]2) & P(Y]|Z) are independent

a . hormalization constant



? Symptom2 causel
cause2

cause — symptom known
symptom — cause unknown
rule ry Bayes rule
f
P(C.1S)= P($,1C)P(C)
P(S, [C)P(C) +P(S, [ C,)P(C,)
C, , C, !
S;:
S,
/ (S 1C)P(C)+P(S|C;)P(Cy)

rule ry



Certainty Factor

 Bayes’ theorem

 In traditional prob. theory the sum of confidence
for a relationship and confidence against the
same relationship must add to 1.

e But, often the expert may have confidence
0.7(e.g.) that some relationship is true & have no
fealing about its being not true.



o Certainty Factor

0 ~ 1
completely completely
wrong right
-1 ~ 0 ~ 1
completely unknown completely
wrong right

— CF

— CF



C r=c/(1-c)
r c =1r/(r+l)
c=05->r=1
( true or false )
fc>05—->r>1
c<05->r<1

if0120.5> : r21> : r-r,<r;

c, <0.5 r<l1

— C = (ryrp))/(ryr+1)
e.g.c, =0.9 — rh=9
c, = 0.25 r, =0.25/0.75 = 1/3
rnr,=3 -»c¢c=3/(1+3) =0.75< 0.9
0.25
(0.5 )



e C dependent Input CF
= CxC,x ... x C|

« A dependent Multiple argued certainty
= R=A/(1-A) ; Certainty Ratio
—> RixR, x ... x RL.=R

s A = R/(1+R)
Cl > Al S
¢ — )— Sfe——




0.8
0.5
1.0

Input certainty?

vV V VY

A 4

A 4

I R

output certainty?
0.5

0.9 ( )

OR

0.3 —

multiple argued
certainty?

—

C, A Independent

Multiple argued
— some conclusion with different rules



0.9
0.5
1.0

U

v

0.45
0.9
ﬂ N
0.25
CF 09 0.25
0.9 025 1
R 1-0.9 1-0.25 3 R
1
Ri X R2 = 9)(5 = 3: R
c-=—2 _o75

1+ R




0.16

0.2

0.8

0.4

0.2

0.9

0.9

0.8

A

A




Conditional problem

fever | —fever
cold 0.04 0.06
—cold | 0.01 0.89

P(cold) =0.04+0.06=0.1
P(cold v fever) =0.04+0.01+0.06=0.11
= P(cold) + P( fever) — P(cold A fever)
P( fever A cold)
P( fever)
_ 0.04 0
0.04+0.01

P(cold | fever) =




Dempster-Shaper theory

deal with the distinction between uncertainty & ignorance

computes the probability that the evidence supports the
proposition rather than computing the probability of a
proposition

— Belief function

e.g. Coin flipping

— Head belief
(1) since we don’t know coin is fair or not

Bel(Head) = 0 Bel(—Head) = 0
(2) fair certainty 90%

Bel(Head) = 0.9 x 0.5 = 0.45
Bel(—-Head) = 0.9 x 0.5 = 0.45



Dempster-Shaper theory(cont’'d)

(3) — 100%
Bel(Head) =1 x 0.5=0.5
Bel(—Head) =1 x0.5=0.5
Plausibility = 1 — Bel()

(1) : Bel(Head) = 0O, Plausibility = 1 — Bel(Head) = 1

< Probability interval >
(1) [0, 1]

(2) [0.45, 0.55]

(3) [0.5, 0.5]




Dempster-Shaper Theorem

e Belief

~ b($) =0
— b)) =1
— forall Ac6,0<Db(A)<1

e Support
spt(D;) = > b(D,)
D, cD;
* Plausibility
— pl(D) =1 —spt(-D))



Example O

Coin A
front(0.8) back(0.2)
Coin B | front(0.6) 0.48 0.12
back(0.4) 0.32 0.08

Belief(Coin A(front) and Coin B(front)) = 0.48
Belief(Coin A(front) and Coin B(back)) = 0.32
Belief(Coin A(back) and Coin B(front)) = 0.12
Belief(Coin A(back) and Coin B(back)) = 0.08

Support(same) = Belief(Coin A(front) and Coin B(front)) +
Belief(Coin A(back) and Coin B(back)) = 0.56

Plausibility(same) = 1- Belief(Coin A(front) and Coin B(back))
— Belief(Coin A(back) and Coin B(front)) = 0.56



Example 1

Melissa
broken(0.9) don’t know(0.1)
Bill | not broken(0.8) 0 (not broken) 0.08
don’t know(0.2) | (broken) 0.18 | (don’t know) 0.02

Belief(broken and not broken) = 0
Belief(broken) = 0.18/0.28 = 0.643
Belief(not broken) = 0.08/0.28 = 0.286
Belief(don’t know) = 0.02/0.28 = 0.071

Support(broken) = Belief (broken = 0.643
Plausibility(broken) = 1 — Belief(not broken) = 0.714

Support(not broken) = Belief(not broken) = 0.286
Plausibility(not broken)= 1 — Belief(broken) = 0.357




Resolution Theorem Proving
(Refutation)

e Steps
1. Put the premises into clause form

2. Add the negation of what is to be proved In
clause form to the set of premises.

3. Resolve these clauses together, producing new
clauses that logically follows.

4. Produce a contradiction by generating the
empty clause.



* Resolution example
1. Whoever can read is literate.
2. Dolphines are not literate.
3. Some dolphines are intelligent cannot read?
— Some who are intelligent cannot read?

. (VX)[R(X) = L(X)]

. (VX)ID(X) = =L(X)]
. (AX)[DX) A 1(X)]

. (AX) A =R(X)]

; 7R(X) v L(X)

: =D(Y) v =L(Y)

; D(@) A 1(a)

—4; —I(Z2) v R(2)

WINNEFEL,B~WDNLPRE

—3X[~] = VX =[~]



~1(2) v R(2) I(a)

{a/Z}\/

R(a) ~R(X) v L(X)
\/{a/X}
L(a) ~D(Y) v ~L(Y)
w}
~D(a) D(a)

Nil
5 : resolution example

therefore I(a) A —R(a)



 Breadth First Strategy : complete

o Set of support strategy

— at least one of the resolvents is either the negated goal
clause or a clause produced by resolutions on the
negated goal —» complete

original
set of (consistent)
clauses

—J
descendents
of —g

o Unit Preference strategy : complete

Unit resolution : not complete
™4 one of the resolvents always be a unit clause.

e Linear Input Form Strategy : not complete




 Once the theorem prover shows that the negated goal is
Inconsistent with the given set of axioms, it follows that the
original goal must be consistent — proof of the theorem
 Resolution is a sound inference rule
- PvQQA(-GVR)>PVR
P v R logically follows from (P v Q) A (=G v R)
. sound
— But it is not complete.
l.e. given set of axiom logically follow fact

— refutation complete.

l.e. the empty or null clause can always be generated wherever
a contradiction in the set of clauses exists.

* Refutation
— Inference procedure using resolution, proof by contradiction



« Refutation
— proof by contradiction

— To prove P, assume P is false & prove a
contradiction

— (SA—P = false) (S > P)



e resolution example
given,

1. b/\c:>a

2.

3. d/\e:>C —> “prove a”
4. evf

5.d A —f

clause form
.—~(bArc)va=-bv-cva
. b
.—(dAre)vc=-dv—-evc
.evf

.d

. —f

. A

~N O 0ok WDN B






goal 1 clause

— < Axioms >
—a(X) v 1(X) v g(f(X))
—f(X) v b(X)
—f(X) v c(X)
—g(X) v b(X)
—g(X) v d(X)
a(g(Xx)) v f(h(X))
— < goal >
@X)EY){[b(X) A c(X)] v [d(Y) A b(Y)]}
— < —goal >
—b(X) v =c(X)
—=b(Y) v =d(Y)



Resolution refutation

~b(X) v ~—c(X) ~d(Y) v —b(Y)
\}v b(X) ‘/g()()v d(X)
10 v ) ~b(X) v ~g(X)
\}V c(X) \/g()()v b(X)
O a0 v vty ~909

~a(X) v g(f(X))

—a(X) a(g(x)) v f(h(x))

\/

f(h(X))

Nil



example problem
— Everyone has a parent.
1. (VX)(AY)p(X,Y)
— A parent of a parent is a grandparent.
2. (VX)(VY)(VZ2)p(X,Y) A p(Y,Z2) = gp(X,2)
— goal ; John has a grandparent?
(3W)(gp(john,W))
— negation of goal
3. =gp(john,W)

Clause form
1. p(X,pa(Xx))
2. —pW,Y) v =p(Y,Z2) v gp(W,2)
3. —=gp(ohn,V)



gp(john,V)

A

4

~gp(@john,V)  —p(W,Y) v —p(Y,Z) v gp(W,2)

{john/W, V/Z}
{john/W, V/Z}

gp(onn.V) ~p(ohnY)  ~p(Y.V) v p(X,pa(x))
John/X, pa(X)/v} wn/x, pa(X)/Y}
gp(ohn,V) ~p(pa(john), V) p(X,pa(X)
{pa(john)/X, pa(X)/V}
gp(john,pa(pa(john))) Nil

V — pa(X) —» pa(pa(john))
* gp(john, pa(pa(john))) is proved



e tautology proof & answer extraction
— goal statement negation tautology
e.g.) —gp(john,V) - —gp(john,V) v gp(john,V)

gp(@ohn,V) v —gp(@john,V) ~p(W,Y) v —p(Y,Z) v gp(W,2)

WW, V/Z}

gp(@ohn,V) v —p(@john,Y)  —p(Y,V) v p(X,pa(X))

\/hnlx, 0a(X)/Y}

gp(ohn,V) v —p(pa(ohn), V)  p(X,pa(X)

{pa(john)/X,pa(X)/V}

| gp(iohn,pa(pa(iohn)))

Answer 4/




Resolution

« ?tolology
— p(X) v =p(X)
e subsume clause

— p(john) subsumes VX p(X)
— p(X) subsumes p(X) v q(X)

e procedure attachment
T F evaluate literal evaluate
— literal T evaluate

— literal F evaluate literal



“If Fido goes where John goes & if John is at school, where is Fido?”
1. (vX)[at(john,X) = at(fido,X)]
2. at(john,school)
3. (IX)at(fido,X) ? — goal

1; —at(john,X) v at(fido,X)
2; at(john,school)
—3; —at(fido,X)

at(fido, Y) ~at(fido,Y)  —at(john,X) v at(fido,X)
l {x/v} \//v}
at(fido,X) ~p(pa(john), V) p(X,pa(X)
X {school/X} \/
at(fido,school) Nil

4 : resolution example
sretain original goal & apply all the _
substitutions of the refutation to this clause. therefore at(fido,school)

we find the answer. fido school



Anyone passing his history exams and winning the
lottery Is happy

VX(pass(X, history) A win(X, lottery) — happy(X))

Anyone who studies or is lucky can pass all his
exams

VXVY(studies(X) v lucky(X) — pass(X,Y))
John did not study but he is lucky
—study(john) A lucky(john)

Anyone who is lucky wins the lottery
VX(lucky(X) —» win(X, lottery))

then

Is John happy?

happy(john)



< Clause form >

1.
2.

—pass(X,history) v —win(X,lottery) v happy(X)
—study(Y) v pass(Y,Z2)

—lucky(W) v pass(W,V)

—study(john)

lucky(john)

—lucky(U) v win(U,lottery)

—happy(john) ?



~pass(X,history) v —win(X,lottery) v happy(X) win(U,lottery) v ~lucky(U)

{U/X}
~pass(U,hitory) v happy(U) v ~lucky(U) ~happy(john)
{john/U}
lucky(john) ~pass(john,history) v ~lucky(john)
{2
~pass(john,history) ~lucky(V) v pass(V,W)

{john/V, history/W}

~lucky(john) lucky(john)

1}




* Resolution strategy

1. Breadth-First strategy
N clause in the original clause set.
1st level : N2 ways of combination

2"d level : Resolve the clauses produced at the 1st |level
with all the original clauses.

nth level : Resolve all clauses at the level n-1 against the
elements of the original clause set & all causes
previously produced.

* large search space
* find the shortest path solution
* if refutation exist, if always finds. —» complete.



I(A)

~1(2) v R(2)

R(A)

L(A)

~1(2) v L(2)

L(A)

~R(X) v L(X) | | ~D(Y) v ~L(Y) | | D(A)
~R(Y) v ~D(Y) | |~L(A)
~1(Z) v =D(2) | | —I(y) v —D(y) ~R(A)

< Breadth-First strategy >




1. The set of support strategy
Suppose a set of input clauses : S
subset of S that includes the negation of the goal : T

S is contradictory <> T is contradictory

* The negation of what we want to prove true is
responsible for causing the clause space to be
contradictory

* Resolution parent goal
descendent







 Unit Preference strategy( )
— literal clause resolution Nil

— Resolution literal
— complete

~1(2) v R(2) I(a)
w
R(a) ~R(X) Vv L(X)
w}
L(a) ~D(Y) v ~L(Y)
Unit resolution strategy
— not complete {a/Y}

~D(a) D(a)

\N”/



Linear Input Form strategy
— negated goal & the original axioms
— take the negated goal & resolve it with one of the axioms.

new clause one of the axioms

new clause one of the axioms

*No previously derived clause is used.
*No two axioms are used.
*not complete



