웹을 이용한 이동로봇의 원격제어
 The Remote Control of Mobile Robots on the Web

옥진삼 - 강근택 - 이원창
J. S. Ok, G. T. Kang and W. C. Lee

Key Words : Remote Location(원격지), Web(웹), Mobile Robot(이동로봇), Image Separation(이미지 분할)

Abstract

It is often necessary to observe the working environment of a robot to control it efficiently in the remote location. The remote sensing data and control commands are transmitted via various media such as radio, microwave, and computer network. The World Wide Web can be used as the infrastructure for teleoperation of mobile robots. In this paper we propose an advanced technique of the remote control of mobile robots on the web. For the real-time control, the image separation algorithm is proposed to transmit the current positions of mobile robots instead of transmitting the full frame image. It is shown by experiments that the proposed algorithm is effective.

1. 서 론

오늘날 로봇 시스템은 공장 자동화, 우주 탐사, 군사 등 광범위한 분야에서 응용되고 있다 ${ }^{11}$. 특히 퍼지, 신경회로망, 유전자 알고리즘 등의 인공지능 이론은 로봇에게 자율성을 부여하여 로봇 혼자서도 주어진 임무를 수행할 수 있는 단계에 이르렀다. 비 단 특수 목적의 로봇 분야뿐만 아니라 청소, 의료보 조, 정원관리 등 일상 생활에서 웅용될 수 있는 연 구도 진행되고 있다 ${ }^{2)}$. 그러나, 로봇이 어느 정도의 자율성울 확보하고 있더라도 로봇의 상태와 주변환 경을 관찰할 필요가 있다. 더구나 로봇 관리자가 원 격지에 있을 경우 네트워크 등 통신환경을 구축하 여 정보를 인식할 필요성이 있다. 한편 인터넷의 발 전은 문자에서 벗어나 음성, 영상 등의 멀티미디어 서비스를 제공하고 있는 추세에 있다. 현재 양방향 화상회의, 원격 감독 시스템 등 인터넷 기반의 응용 분야도 주목할 만하다 ${ }^{3}$ ㅎ) 그리고 인터넷 기반의 프 로그래밍 언어의 등장으로 인해 인터넷에서의 응용 분야의 범위는 더욱 확대되어 가는 추세이다. 원격 지에서의 로봇제어환경에서는 원격지에서 사용자에 게 편리한 제어환경을 제공하기 위해서 원격지의

옥진삼 : 부경대학표 대학원
강근택, 이원창 : 부경대학교 전자컴퓨터정보통신공학부

환경을 실시간으로 사용자가 인식하는 것이 요구 된다. 그러나 이미지 기반의 명령시스템은 이동로 봇의 실시간 제어를 위해서 빠른 이미지 전송을 요구한다. 본 논문에서는 이러한 인터넷 기반의 이

Fig. 1 Block diagram of the remote control system

동로봇의 원격제어 시스템과 준 실시간 이동로봇 의 제어를 위해 이미지 분리 및 위치 전송 알고리 즘을 제안하고, 실험을 통해서 알고리즘 적용의 결 과를 보인다.

2. 이동로봇 원격제어시스탬

2.1 시스템의 전체 구성

시스템의 환경은 Fig. 1 과 같다. 이미지 처리 및 이동 명령을 생성하기 위한 컨트롤 시스템과 웹브 라우저를 탑재한 임의의 사용자 PC , 그리고, 웹서버 로서 구성된다. 컨트롤 시스템은 이미지를 퉁해 이 동로봇 및 목표지점의 위치와 방향각을 계산하여 이동로봇의 이동명령을 생성한다. 또한 이미지 처리 를 퉁해 얻어진 로봇의 위치를 웹서버를 통해 클라 이언트로 송신한다. 웹서버는 컨트롤 시스템으로부 터 이동로봇의 위치를 전송 받아 로봇의 이미지를 클라이언트에 나타낸다.

Fig. 2 Operating architecture of the remote control system

2.2 시스템간의 통신과 원격지의 로못 제어환경

시스템의 통신은 소켓을 생성하여 네트워크를 형 성함으로써 이루어진다. Fig. 2와 같이 각각의 시스 템은 소켓 접속을 통해 네트워크를 형성하고, 클라 이언트의 사용자 인터페이스는 웹서버로부터 사용 자 인터페이스 애플릿을 다운받아 로봇을 제어한다. 컨트롤 시스템은 로봇의 이미지 처리부와 소켓 통 신 그리고 이동로봇에게 명령 송신을 위한 무선 직 렬 통신부로 구성된다.

시스템간의 퉁신은 두 가지로 나누어지는데 클라 이언트에서 컨트롤 시스템과의 통신과 컨트롤 시스 템으로부터 클라이언트와의 통신이다. 전자는 사용 자로부터 로봇의 목표 위치를 입력받아서 컨트롤 시스템으로 전송하고, 로봇의 이미지와 로봇의 환경 을 프레입을 퉁해 출력한다. 컨트롤 시스템은 이미 지 프로세싱을 통해 얻어진 로봇의 현재위치를 클 라이언트로 전송하고 현재 목표와 이동목표위치로 부터 이동명령을 생성하여 로봇에게 무선으로 이동 로봇에게 전송한다.

Fig. 3과 4는 각각 클라이언트 사용자 인터페이스

Fig. 3 Web user interface

Fig. 4 Control system interface

와 컨트롤 시스템의 사용자 인터페이스이다. 로봇의 이동명령 방식은 사용자가 클라이언트에서 마우스 로 이동하고자 하는 포인트를 클릭하면 클릭된 좌 표가 컨트롤 시스템으로 전송되고 컨트롤 시스템은 전송받은 좌표를 바탕으로 로봇의 이동명령을 생성 한다. 클라이언트의 인터페이스 구현을 위해서 현재 인터넷 언어로 널리 사용되는 JAVA 언어를 사용하 였으며, 컨트롤 시스템은 C++ 언어로 구현했다.
2.3 이미지 분할 및 위치 전송

Fig. 5 Image separation

본 논문에서 제안하는 이미지 분할 및 위치 전 송 알고리즘은 다음과 같다. 전체 프레입을 실시간 으로 전송하여 클라이언트에 출력하기 위해서는 빠른 네트워크 속도를 요구한다. 따라서 본 논문에 서는 전체 정지영상의 전송 대신에 이미지를 분리, 압축하여 웹서버에 미리 저장하고 로봇의 위치의 위치를 전송하여 준 실시간을 만족하도록 하는 알 고리즘을 제안한다. 이미지 분할 및 위치 전송 알 고리즘의 개념은 Fig. 5와 같이 로봇의 환경 이미 지와 이동로봇의 이미지를 분리, 웹서버에 저장하 고, 전체 이미지 대신에 이미지 프로세싱을 통해 얻어진 로봇의 위치만을 전송함으로써 이동로봇의 제어를 실시간에 가깝도록 구현하는데 있다. 로봇 의 위치를 전송하기 위해 정지화상의 이미지 프로 세싱 ${ }^{6)}$ 과정이 필요하다.

2.4 로봇의 위치 및 방향각 계산

로봇의 현재위치 x_{c} 와 y_{c} 는 CCD 카메라로부터 얻은 컬러정지화상을 이미지 프로세싱을 통해 구한 다. 로봇은 로봇의 위치와 자세를 계산하기 위해 두 가지의 페치색을 가진다. 로봇의 위치는 주 페치색 을 찾아서 계산되고, 부페치는 로봇의 자세를 계산 하기 위해 사용되어진다. 페치의 중심은 면적 계산 법을 통해 중심위치를 꾸할 수 있다. 로봇의 위치와 방위각 계산을 워해서 두 단계의 계산과정을 적용 했다.

단계 1. 전체 이미지 검색을 통한 면적 중심법에 의한 이동로봇의 위치검출
단계 2. 톡정영역 검색을 통한 임계값 처리와 레이블링에 의한 이동로봇의 위치 및 방향각 계산
먼저 단계 1 을 통해 로봇의 위치를 찾는다. 그러면 단계2에서 로봇위치와 방향각을 계산한다. 이렿게 두 단계로 나누는 것은 매 프레입마다 전체 이미지 처리의 계산량을 줄임으로써 보다 빠른 이미지 처 리를 위해서다. 단계 2에서의 로봇의 위치와 방항각 계산의 과정은 다음과 같다.

단계 2 의 로봇의 위치와 방향각 계산과정은 다음과 같다.

1) 단계 1 에서의 언어진 로봇의 위치를 중심으로 상하 좌우 50 키기의 영역, 즉 가로, 세로 $100 \times$ 100 픽셀크기의 영역을 임계값 처리를 통해 각 픽셀에 대표값을 부여한다.
2) 과정 1)에서 얻어진 대표값으로부터 주페치의 네 개의 꼭지점을 찾는다.
3) 구해진 네 개의 꼭지점으로부터 각 꼭지점간의 거리를 계산한다.
4) 각각의 거리중에서 가장 거리가 긴 두 꼭지점을 얻은다.
5) 두 꼭지점간의 중심을 계산하여 로봇의 중심을 찾는다.
6) 두 꼭지점을 잇는 직선을 경계로 해서 법선 성 분의 픽셀값을 조사해서 로봇의 앞뒤를 계산하 고, 로봇의 방향각을 계산한다.
로봇의 현재좌표와 방향각과 목표지점의 좌표와 방 향각으로부터 식(1),(2)로부터 구해진다. Fig. 7의 기준좌표계 $o_{0} x_{0} y_{0}$ 에서의 로봇의 위치와 방향각을 $\left(x_{R}, y_{R}, \theta_{R}\right)$, 로봇좌표계 $o_{r} x_{r} y_{r}$ 에서의 목표지점 의 위치와 방향각을 $\left(x_{G}, y_{G}, \theta_{G}\right)$ 라고 하면 거리

Fig. 6 Computation of robot's position and orientation

Fig. 7 Computation of distance and orientation difference

오차와 방향각오차는 다음식 (1),(2)에 의해서 구해 진다.

$$
\begin{equation*}
\theta_{e}=\theta_{R}-\theta_{G} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
d_{e}=\sqrt{\left(x_{R}-x_{G}\right)^{2}+\left(y_{R}-y_{G}\right)^{2}} \tag{2}
\end{equation*}
$$

여기서 θ_{e} 는 방향각오차, d_{e} 는 로봇의 위치와 목 표위치와의 거리오차이다.

$$
\begin{gather*}
V_{l}=K_{p d} \cdot d_{e}-K_{p a} \cdot \theta_{e} \tag{3}\\
V_{r}=K_{p d} \cdot d_{e}+K_{p a} \cdot \theta_{e} \tag{4}
\end{gather*}
$$

여기서, $K_{p d}$ 는 와 $K_{p a}$ 는 각각 비례계수가 된다. 이동로봇에서 모터를 구동하기 위한 신호는 PWM(pulse width module)신호이다. 따라서 이동 로봇으로 속도 데이터를 전송하기 전에 선속도를 적절한 PWM 제어신호로 변환한다. 로봇의 제어는 Fig. 8에서와 같이 이미지 프로세싱을 통해 로봇의 거리오차와 방향각오차로 지령을 생성하는 폐루프 시스템이 된다.

Fig. 8 Block diagram of robot control system

Fig. 8 에서 $p_{g}=\left[\begin{array}{lll}x_{g} & y_{g} & \theta_{g}\end{array}\right]^{T}$ 는 목표좌표와 방향각 의 벡터를 나타내고, $p=\left[x_{c} y_{c} \theta_{c}\right]^{T}$ 는 현재 로봇 의 좌표와 방향각의 벡터이다. e_{p} 는 자세오차를 나 타내는 벡터이다. T_{e} 는 이득계수이고, $T_{p u m}$ 은 변환 계수이다. $v=\left[v_{l} v_{r}\right]^{T}$ 는 왼쪽 바퀴와 오른쪽 바 퀴 입력의 선속도 벡터로

$$
\begin{equation*}
v=T_{e} \cdot e_{p} \tag{5}
\end{equation*}
$$

로 주어진다.

2.5 이동로봇

이동로봇은 $8.0 \mathrm{~cm} \times 8.0 \mathrm{~cm} \times 8.0 \mathrm{~cm}$ 의 비홀로노 믹 로봇이다 ${ }^{71}$. 로봇의 외형은 Fig. 9 와 같다. 로봇의 프로세서는 Intel사의 80 C 196 KC 를 사용했다. 로봇 의 이동은 오직 CCD 카메라를 통한 비전 처리만으 로 이루어짐으로 별도의 센서를 장치하지 않았다.

3. 실 험

실험은 가로 150 cm , 세로 120 cm 의 로봇 축구경 기장을 주변환경으로 설정하였다 ${ }^{8)}$. 웹서버의 운영 체제는 UNIX Solaris ver. 2.6 이고, 컨트롤 시스템

Fig. 9 Target mobile robot

Fig. 10 Image of target robot on control system user interface (a) initial position (b) target robot under remote control

(a)

Fig. 11 Image of target robot on the web user interface (a) initial position (b) target robot under remote control

의 PC 사양은 Pentium 180 MHz , 이미지 치리를 위 해 CCD 카메라, 640×480 픽셀의 컬러 프레임 그래 버를 사용했다. 로봇의 이동명령 생성은 토봇의 목 표위치가 주어지면 로봇의 위치, 방향각, 목표지점 과의 방향각 오차를 계산하여 생성한다. 명령의 순 서는 방항각 오차만큼의 회전 명령을 주고, 방향각 오차가 ± 5 도이내에서 직진명령을 주도록 했다. 이 동명령 전송은 표1과 같은 패킷 구조를 가진다. 이 동로봇의 직진속도는 약 $20 \mathrm{~cm} / \mathrm{sec}$ 로 등속도로 제한 했다. 회전속도는 표 1 에서와 같이 회전해야할 반경 에 비례하여 시간값을 주는 방식을 사용했다. 실험 에서 각각의 PWM 값은 좌우 모터 각각 115,125 를 주었올 때 직진함을 실험을 통해 얻을 수 있었다. 직진명령 좌우 모터의 PWM 값은 다음 식에 의해 계산했다.

$$
\begin{align*}
& l_{\text {pum }}=115+K_{\theta} \cdot \theta_{e} \tag{6}\\
& r_{\text {pum }}=125-K_{\theta} \cdot \theta_{e} \tag{7}
\end{align*}
$$

여기서, $l_{p u m}, r_{\text {pum }}$ 은 각각 좌우 모터의 PWM값이 고, $K_{\theta,} \quad \theta_{e}$. 는 각각 비례상수와 방향각오차이다. 이미지 처리는 약 초당 7프레임의 결과를 보였다. 로봇의 위치 및 방향각 계산을 위해 노란색과 녹색 의 페치색을 사용하여 임계값 처리와 페치의 네 개 의 꼭지점을 찾아서 방향각을 계산했다. Fig. 10 은 컨트롤 시스템의 사용자 인터페이스에서의 로봇의 이동을 나타낸 것이다.
Fig. 11은 컨트롤 시스템에서 전송된 로봇의 이동 좌표를 클라이언트에서 출력된 것을 나타낸다.

4. 결 론

본 논문에서는 웹상에서 이동로봇의 원격제어에 관한 시스템을 구현했다. 원격지에서 로봇의 제어 를 위해서는 준 실시간성을 요구한다. 그러나 현재 일반적인 네트워크의 전송속도는 실시간적으로 영 상데이터와 기타 원격제어에 필요한 데이터를 전송 하기에는 다소 미흡하다고 할 수 있으며,이러한 상 황에서 원격제어를 행한다면 통신시간의 지연에 의 해 원할한 제어가 이루어지기 어렵다. 따라서, 로봇 의 준 실시간 제어와 제어 환경의 편이성을 위해 이 미지 분할 및 위치 전송 알고리즘을 제안하였으며, 실험을 퉁해 로봇의 이동제어의 결과를 보였다. 실 험에서 로봇의 이미지 프로세싱과 로봇의 위치 전 송은 약 초당 7회의 전송 결과를 보였으며, 전송데 이터의 패킷의 크기는 10 바이트 미만으로 네트워크 의 전송속도에 영향을 받지 않았다. 향후 과제로서 이동로봇의 제어환경의 보다 정확한 정보제공을 위 한 실시간 동영상 전송 알고리즘 구현에 대한 연구 가 요구된다.

참고문헌

1. S. Hyati and R. Volpe, "The Rocky 7 Rover: A Mars Sciencecraft Prototype", Proc. of the 1997 IEEE International Conference on Robotics and Automation Albuquerque, New Mexico, pp. 2458~2464, April, 1997
2. http://cwis.usc.edu /dept/garden
3. T. M. Chen and R. C. Luo, "Remote Supervisory Control of Autonomous Mobile

Robot Via World Wide Web", ISIE '97-Guimaraes, Portugal, pp. 60~64, 1997
4. Ren C.Luo, Wei Zen Lee, Jyh Hwa Chou, and Hou Tin Leong, "Tele- Control of Rapid Prototyping Machine Via Internet for Automated Tele- Manufacturing", Proc. of the 1999 IEEE International Conference on Robotics and Automation, pp. 2203~2208, 1999
5. T. Fitzpatrick. "Live Remote Control of a Robot via The Internet", IEEE Robotics \& Automation Magazine, pp. 7~8, September 1999
6. R. C. Gonzalez and R. E. Woods "Digital Image Processing", Addsion Wesley, 1992
7. K. C. Koh and H. S. Cho "A Smooth Path Tracking Algorithm for Wheeled Mobile Robots with Dynamic Constraints" Journal of Intelligent and Robotic System, Vol. 24, pp. 367~385, 1999
8. 김종환, "로봇 축구 시스템" 대영사, 1999

