BAYESIAN LEARNING
Machine learning : Tom Mitchell Àú, McGRAW-HILL, 1997, Page 154~199
3. BAYES THEOREM AND CONCEPT LEARNING
(1) Brute-Force Bayes Concept Learning
(2) MAP Hypotheses and Consistent Learners
4. MAXIMUM LIKELIHOOD AND LEAST-SQUARED ERROR HYPOTHESES
5. MAXIMUM LIKELIHOOD HYPOTHESES FOR PREDICTING PROBABILITIES
(1) Gradient Search to Maximize Likelihood in a Neural Net
6. MINIMUM DESCRIPTION LENGTH PRINCIPLE
(1.1) ESTIMATING PROBABILITIES
10. AN EXAMPLE : LEARNING TO CLASSIFY TEXT
(4) Learning Bayesian Belief Networks
(5) Gradient Ascent Training of Bayesian Networks
(6) Learning the Structure of Bayesian Networks
(1) Estimating Means of Gaussians
(2) General Statement of EM Algorithm
(3) Derivation of the Means Algorithm
13. SUMMARY AND FURTHER READING
p154
p155
p156
Bayes theorem :
(1)
p157
(2)
(3)
p158
p159
Ç¥ 1
|
(i.e.,
)
BRUTE-FORCE MAP LEARNING algorithm
1.
2.
p160
1.
2.
3.
for all
in
p161
if
is inconsistent with
(5)
p162
±×¸² 1
p163
p164
±×¸² 2
p165
Probability density function:
p166
(6)
p167
p168
(7)
p169
(8)
(9)
(10)
(11)
(12)
p170
(13)
(14)
th
th
p171
(15)
(16)
p172
(16)
p173
(17)
p174
p175
(18)
p176
1.
2.
p177
(19)
(20)
p178
(21)
p.179
(22)
p180
-estimate
p181
th
p182
p183
1.
2.
p184
p185
(23)
(24)
p186
±×¸² 3
p187
p188
(25)
p189
p190
(26)
p191
p192
±×¸² 4
(27)
(28)
th
p193
Step 1 :
Step 2 :
th
p194
p195
Step 1 :
Step 2 :
p196
(29)
(30)
(31)
p197
p198
1. ¡þcancer
2.
3. (a)
(b)
(c)
5.
(c)