Ժ
̾߱ : ؿ. ʿ , ī, 2003, page 169~199
忡 ̳ ؼ ڷ Ÿ ̻Ȯ Ͽ. ̹ 忡 ڷ ȿ ȭϴ Ȯ Ȯ ٷ Ѵ.
ȮеԼ (probability density function) ڷ Ǿ ִ Ȯ ǥ ̴. ȮеԼ Ȯϰ ϱ ؼ ϵ . ϻȰ ϴ η縶 ȭ  98 mm ̴ 70 m η縶 ȭ ǰ̶ ִ. η縶 ȭ ǰ Ѵ. ȭ ȭ 100 Ͽ ̸ ϰ <ǥ 1> Ȯ .
<ǥ 1> η縶 ȭ Ȯ
| (m) : X |  | Ȯ : P(x) | Ȯ | 
| 68 69 70 71 72 | 15 25 40 15 5 | 0.15 0.25 0.40 0.15 0.05 | 0.15 0.40 0.80 0.95 1.00 | 
| 100 | 1.00 | - | 
 
<ǥ 1> Ÿ Ȯ ð  ۼϸ  1 .

 1 Ȯ 
 1 Ÿ ٿ Ȯ  ǥϸ ڷ ľ ִ. η縶 ȭ 1,000 Ͽ Ȯ Ÿ  2 ̴.
 2 ڷ 翡 Ͽ Ȯе Ÿ μ Ȯ Ȯ 1 ̴. η縶 ȭ Ͽ ϰ ߴٸ ڷ Ȯе  3 Ų  Ÿ ̴.

 2 Ȯ 

 3 ȮеԼ 
 3 Ų  ȮеԼ Ѵ. ٽ ϸ ȮеԼ X  Ȯ , Y Ȯ Ÿ Ȯ ǥ ̴. Ƿ ȮеԼ Ȯ X ǰų а Ȯ Ÿ Լ̴. Ȯе Լ · ǥϱ ؼ P(x) f(x) Ÿ.  ȮеԼ f(x) Ȯ ϴ Լμ Ư ִ.
ù°, ȮеԼ Ʒ ִ ü 1 ̴.
Ȯ ̱ ȮеԼ 1 ̴.
               
°, Ȯ X ȿ Ȯ  Ʒ .
X a b ̿ Ȯ ̴.

°, ȮеԼ f(x) Ȯ ϹǷ  0 ̻ 1 ´.

ȮеԼ ߿ ߿ Ȯ Ժ̴.
Լ ̶ ó ƺ긣 (A. D. Moivre, 1667~1754) ̴.  ö (P.D. Laplace, 1747~1827)  (normal curve) Ͽ. 콺 (Karl F. Gauss, 1777~1825) 迡 Ȯ  ٴ Ͽ Ժ (normal distribution) ҷ. Ƿ Ժ ϸ 콺 (Gaussian distribution) θ Ѵ.
ڿ   ȸ  м   ϰ ȰǴ Ȯ Ժ̴. ֳϸ ̳  Ͽ  ڷ Ȯ κ Ժ  ̴. Ƿ Ժ Ͽ
Ȯ ϴ  ſ ߿ϴ.   Ȯ X    ̰ л  Ժ Ѵٸ, ȮеԼ
 1  Ÿ.
  Ժ Ѵٸ, ȮеԼ
 1  Ÿ.
| Ժ ȮеԼ : | 
 | 1 | 
1 Ÿ Ժ  ¸ ´. Ժ ġ տ Ͽ ǰ, ǥ ũ Ͽ . ̷ Ժ ȮеԼ ܼ ̶ θ Ѵ.   ǥ ũ  Ÿ? Ʒ  4 հ ǥ  Ÿ ̴.

 4 
 4  = 10, = 4 ̰,  = 30, = 15 ̴. Ժ հ ǥ (bell) Ÿ, ߽ ¿ Ī̴.  ǥ ũ Ժ ° ٸ. ǥ ũ Ժ а ̰, ǥ Ÿ. Ȯ X հ ǥ Ժ ġ ٸ Ÿ Ժ Ư ´.
ù°, Ժ Ÿ ¿ Ī̴.
Ժ ߽ ¿ Ī̸ Ÿ. Ƿ Ժ Ȯ X ߾ġ ֺġ .  Ȯ X Ѵ ִ.
°,  ġ    ؼ ,   ǥ 
ũ ؼ ȴ.
 Ժ  = 10    ߽ ġ 10 ̰,  = 30 ̸  ߽ ġ 30 ̴.  ǥ 
Ժ    Ÿ, ǥ ũ а  · Ÿ.
°, ڷܿ  հ ǥ ũ ٸ.  κ k
 ǥ ̳  Ȯ X  Ե Ȯ . Ȯ X    ̰ л  ԺѴٸ,  κ
±, ±2, ±3   Ȯ  Ե Ȯ  68.3 %, 95.4 %, 99.7 % ̴.
  ԺѴٸ,  κ
±, ±2, ±3   Ȯ  Ե Ȯ  68.3 %, 95.4 %, 99.7 % ̴.
η縶 ȭ ̴ 70 m ̰ ǥ 2 m ԺѴٸ, 68 m 72 m ̿ ̸ ȭ ü 68.3 % ̴.  66 m 74 m ̿ ̸ ȭ ü 95.4 % ̴. ̷ Ժ Ȯ Ư  Ÿ  5 .

 5 Ժ Ȯ Ư
Ժ Ȯ 2 .
| Ժ Ȯ : | 
 | 
 | 2 | 
| 
 | 
 | ||
| 
 | 
 | 
 2    Ÿ Ȯ 0.683  翬 ԺԼ  1  
̴.   ̴.
 ̴.
̷ 3 Ư Ժ Ȯ ߿ ġ Ѵ. ֳϸ ڷ Ȯ ´ κ Ժ ̴. ̳ Ͽ ڷ  Ÿ κ  Ÿ. η縶 ȭ , , 丮 Ű ڷ Ȯ κ ߽ ¿ Ī Ժ . Ӹ ƴ϶ ǥ հ ǥ Ȯ ԺѴ.
 κ ũⰡ ǥ ִ.  ǥ հ Ժ . ̷ ǥ 跮 Ȯ п ſ ߿ϹǷ 6 忡 ڼ ̴.  ٿ  Ȯ ǥ ũⰡ ũ  Ժ Ѵ. θô뿡 θ (Rome) ߵ Ȯ Ժ Ѵ.
Ȯ X ̰ л 2 ԺѴٴ 3 ǥ.
| Ȯ X Ժ : | X ~ N (, 2) | 3 | 
Ȯ X X ~ N (, 2) ٸ, Ȯ X a b ̿ Ȯ ԺԼ a ~ b Ͽ ִ.
| a ~ b ̿ Ȯ : | 
 | 4 | 
 Ȯ Ȯ ϱ Ͽ ԺԼ 4 ϴ ſ ư ŷο ̴. ̷ 쿡 Ȯ ǥȭ ȯϿ ǥԺ (standard normal distribution) ϴ Ȯ ϸ ſ ϴ. ⼭ Ȯ ǥȭ ȯŰ ˾ƾ Ѵ. ǥȭ Ȯ κ ̸ ٽ ǥ ο Ȯ ȯŲ ǹѴ. Ӱ ȯ Ȯ ǥԺ (standard normal variable) Ѵ.
ٽ ϸ Ȯ ǥȭ ȯŲ ǥԺ̸ Z ǥϰ ǥȭ 5 .
| ǥȭ (= ǥԺ) : | 
 | 5 | 
ǥȭ ȯ Z Ȯ ǥԺ ϸ  6 Ÿ.

 6 ǥԺ
տ ٿ հ ǥ ũ Ժ ġ ٸ. Ƿ ٸ Ժ Ȯ мϴ ſ ƴ. ֳϸ   Ȯ Ȯ ϴ Ұϱ ̴. Ժϴ Ȯ ǥȭ Z ǥȭϿ ǥԺ ̿ϸ ϴ. ǥȭ Z 0 ̰ л 1 Ժ Ÿ Ư ִ.
̷ 0 ̰ л 1 Ժ ǥԺ ϰ Z ~ N(0, 1) ǥѴ. Ͽ ǥԺ Ư ˾ƺ.
|  1 | 1997 ѱ ǥذп ǥü硹 ǽ ִ. 츮 1979 ó ü縦 ǽϿµ ̹ 4 ° 簡 ̷ ̴. ϸ 츮 (25 ~ 50 ) ̴ 248 mm ̰ ǥ 10 mm ԺѴ. ̴ 228 mm ̰ ǥ 9 mm ԺѴ.  ̴ Ű ٴϴ Ź ũ⺸ ξ ۰ Ÿ. ̴ ٸǷ ̸ Ȯ X . (1) Ȯ X 238,258  Ǵ ǥȭ Z ϶. (2) ǥȭ Z 1.5, -2.0  Ǵ Ȯ X ϶. (3) P(-2.0 Z 2.0) = 0.954 Ű Ȯ X ϶. | 
| Ǯ 1 | ̸ Ȯ X Ÿ± Ȯ X 248 ̰ ǥ 10 ԺѴ. (1) Ȯ X = 238, Ǵ 258 Ǵ ǥȭ Z 5 ̿Ͽ ִ. X = 238 = 248, = 10 ̹Ƿ, 
 X = 238 ǥȭ Z = -1.0 ̴. X = 258 = 248, = 10 ̹Ƿ, 
 X = 258 ǥȭ Z = 1.0 ̴. (2) ǥȭ ־  Ǵ Ȯ ϴ ̴. (1) 5 ̿Ͽ Ѵ. Z = 1.5 = 248, = 10 ̹Ƿ, 
 Ȯ X Ͽ ش ϸ X = 248 + 1.5 (10) = 263 ̴. Z = -2.0 , = 248, = 10 ̹Ƿ, 
 Ȯ X Ͽ ش ϸ X = 248 + (-2.0)(10) = 228 ̴. Z = -2.0 X = 228 ̴. (3)            
  ǥȭ  Z  –2.0  2.0 ̿    Ȯ
  95.4 % ̴.  ǥȭ Z  –2.0  2.0   Ǵ Ȯ X  ϸ  .  ε –2.0  Z  2.0   
 =
   =
  -20  X – 248  20 :   248  Ѵ. =
  -20 + 248  X  20 + 248 = 228 X 268 Ȯ X 228 268 ̴. | 
Ժ ǥԺ  踦 ΰ ִ 캸. Ȯ X ̰ л 2 ԺѴٸ, X ȯ ǥȭ Z 0 ̰ л 1 ǥԺѴ. Ȯ X Ժϰ X κ ȯ ǥȭ Z ǥԺϴ 踦  Ÿ  7 .

 7 Ժ ǥԺ
 7 ִ ٿ Ժ Ȯ X 248  ϴ ǥȭ Z 0 ̴. Ȯ X κ ǥ 238  ϴ ǥȭ Z –1 ̴.  Ȯ X κ l ǥ ū 258 ǥȭ Z +1 ̴.
 7 Ÿ ٿ Ȯ X ̰ л 2 Ժ , Ȯ X + ̸ Ǵ ǥȭ Z 1 ̰, Ȯ X + 2 ̸ Ǵ ǥȭ Z 2 ̴. Ȯ X ǥȭ Z 翬 0 ̴.  ǥȭ Z 0 ̰ л 1 ϵ . 켱 ǥȭ Z Ͽ ġ غ.

ǥȭ Z ġ 0 ̴. ǥȭ Z Ͽ л غ. л ǿ ǥȭ Z л .
Var(Z) = E[Z-E(Z)]2, ⼭ E(Z) = 0 ̴.

ǥȭ Z 0 ̰ л 1 ǥԺ ִ. ǥԺ  ȰǴ Ͽ 캸.
|  2 | (TOEFL) ϰ ִ ѹ̱ (KAEC) ̴. ѹ̱ܿ ̱̳ ijٿ ϱ ý ѱл ִ. 1989 7 2 7 7 õ Ͽ. 700 ؿ ڵ 504 ̰ ǥ 80 ԺѴ. (1) 504 584 ̿ ִ ڴ ü  % ΰ? (2) 624 ̻ ڴ % ΰ? (3) 344 Ϸ Ÿ ڴ % ΰ? | |
| Ǯ 2 | Ȯ x .  Ȯ x 504 ̰ ǥ 80 ԺѴ. ǥѴٸ, X ~ N (504, 802) ̴. (1)            
   504  584  ̿ Ȯ ϴ ̹Ƿ
    Ȯ ǥȴ. P(504 X 584) = ?   ش ϵ . 
 P(504  X  584) ; ǥȭŲ.
 
 = 0.3413   504  584  ̿ ִ ڴ 34.13 % ̴. ̷  ϱ? ǥԺ Լκ ִ. Ȯ X ̰ л 2 Ժ Ѵٸ, ǥȭ Z 6 Ÿ ǥԺ Լ ´. ǥԺԼ :  Ȯ X  ã   ǥȭ  Z  ȯϸ Z   0  1 ̴. 
  ǥȭ  Z  0  1     Ȯ  . 
  ʿ Ȯ   ǥԺ Լ   .  Z    
   Ȯ η  P(0.0  Z  1.0) =
  0.3413,        P(0.00  Z  1.11) =
  0.3665 P(0.0 Z 1.64) = 0.4495, P(0.00 Z 1.96) = 0.4750 (2) 624  ̻   ڴ  % ΰ? Ȯ ǹϴ  Ÿ 
  . P(X 624) = ?   ش ϵ . 
 P(X  624) ; ǥȭ Ų. 
 = P(Z
   1.50) ; η   Z   0 
  1.50  Ȯ Ÿ  0.5  P(0  Z  1.50)  . = 0.5 – P(0  Z  1.50) = 0.5 – 0.4332 = 0.0668 624 ̻ ڴ 6.68 % ̴. (3) 344 Ϸ Ÿ ڴ % ΰ? Ȯ ǹϴ Ÿ . P(X 344) = ?   ش ϵ . 
 P(X  344) ; ǥȭϸ  
 = P(Z
   -2.0) ; Z    (-)  Ÿ 0  ߽ ¿Ī̱  η  = P(Z  2.0) = 0.5 – P(0  Z  2.0)  = 0.5 – 0.4772 = 0.0228 344 Ϸ Ÿ ڴ 2.28 % ̴. | |
2 Ǯ ٿ ǥԺ ſ д.  ڷ Ժ ٵȴٸ 켱 ǥȭ ȯϿ ǥԺ ̿Ѵ. ǥԺ پϰ ִ. ڷ Ժ ٸ 켱 Ȯ հ ǥ ǥȭ ȯ ǥԺ ؾ Ѵ. ǥԺ ɷ ⸣ ٸ 캸.
|  3 | 츮 ü Ǿ ִٰ ص ģ ƴϴ. ü 75 % , ü 60 % ̴.   ݽϴ 쿡 ִ 120 , ʰ ݽϴ 쿡 ִ 7 ̴. 츮 ó 1908 ҵ ( 뷮) 1 δ Ϸ 180 12 ߴٰ Ѵ.  ظ Ǿ 1996 83.6 % ϸ, 1 δ Ϸ  409 1.5 ¥ Ʈ 273 شѴ. Ǿ K 翡 2 õ л Ȱϰ ִµ, Ϸ翡 л ϴ  500 ̰ ǥ 100 ̸ ԺѴٰ Ѵ. (1) 翡 Ϸ翡 450 600 ̿ ϴ л % ΰ? (2) 翡 Ϸ翡 550 700 ̿ ϴ л % ΰ? (3) Ϸ翡 400 ̻ ϴ л % ΰ? | 
| Ǯ 3 | Ϸ 뷮 ʰ л鸶 Ѵ. 뷮 Ȯ X .  Ȯ X 500 ̰ ǥ 100 Ժ Ѵ. (1) P(450 X 600) = ?    P(450  X 
  600) ; ǥȭ Ų. 
 = P(-0.5  Z  1.0) ; ǥԺ  κи Ȯ Ÿ ִ.  = P(-0.5  Z  0.0) + P(0.0  Z  1.0) = P(0.0  Z  0.5) + P(0.0  Z  1.0) ; ¿Ī̹Ƿ = 0.1915 + 0.3413 = 0.5328 Ϸ翡 450 600 ̿ ϰ ִ л 53.28 % ̴. (2) P(550 X 700) = ? 
 P(550  X  700) ; ǥȭ Ų. 
 = P(0.5  Z  2.0) = P(0.0  Z  2.0) – P(0.0  Z  0.5) = 0.4772 – 0.1915 = 0.2857 (3) P(X 400) = ? 
 P(X  400) ; ǥȭ Ų. 
 = P(Z  -1.0) = 0.5 + P(0.0  Z  1.0) = 0.5 + 0.3413 = 0.8413 Ϸ翡 400 ̻ ϴ л 84.13 % ̴. | 
ϰ ǥԺ ̿ϱ ǥȭ Ư¡ 캸. Ȯ X ̰ л 2 ԺѴٰ . 2 ũ ۵ Ȯ X ǥȭ Z ȯϸ, Z 0 ̰ л 1 ǥԺѴ. ǥȭ Z Ư ǥԺ Ư Ȯ Ÿ.
| ǥȭ Ȯ : | P(-1.64 Z 1.64) 0.900 P(-1.96 Z 1.96) = 0.950 P(-2.58 Z 2.58) = 0.990 | 7 | 
7 Ư Ȯ Ͽ ǥȭ Z Ÿ ̴. 7 7 8 忡 ſ ߿ Ѵ.
|  4 | ̶ ̾ð ϴ 츮 ⸸ ѿ⸦ ã´. 1974 ⸸ ص 츮 Ȳ Դ 289 kg ̾. о߿ ߴ Ծ ѿ Դ þ ó Ȳ Դ 500 kg Ѵٰ Ѵ. 츮 ϰ ִ 18 ̻ Ȳ Դ 500 kg ̰ ǥ 50 kg ԺѴٰ . 췮 ѿ츦 ϱ  ſ 5 % شϴ ȲҸ ϰ Ѵ. ٸ  kg ̻ ȲҸ ؾ ϴ°? | 
| Ǯ 4 | Ȳ Ը Ȯ X .  Ȯ X 500 ̰ ǥ 50 ԺϹǷ  Ÿ.  = 500, = 50 ̴. 
   ſ 5 % شϴ κ ˰ Ÿ ֱ X0 Ǵ ǥȭ Z 7 ؼ 1.64 ִ. Ƿ Ѵ. 
 X0 = 1.64 (50) + 500 = 82 + 500 = 582 582 kg ̻ ȲҸ ؾ Ѵ. | 
 Ȯ  쿡 ǥ ũ Ȯ Կ ־ ſ ŷӴ. Ȯ Ƚ ũ  ´ Ժ Ѵٴ 4 1 ִ. Ƿ  Ժ ٽ ִ. Ժ ߿  ִ.   Ժ ٵDZ ؼ  ʿ 캸.
ù°, ǥ ũⰡ  Ŀ Ѵ.
°, Ȯ ſ ũų   ʾƾ Ѵ.
 Ƚ n ũ Ȯ ſ  Ժ Ѵ.  ϴ Ȯ Ƚ ũ Ȯ ϴٸ Ƽۺ . ļ 8 Ű  Ժ ٽ мϿ  ʴ´.
|  Ժ : | (1) < 0.5 n > 5 (2) > 0.5 n(1-) > 5 | 8 | 
Ư n Ŭ μ Ȯ ϴ ſ ŷο ̱ Ժ ٽ мϴ ϴ.  Ժ  Ǵ ϱ .
ü νϴ ɷ ٷ ÷̴. ̱ ü α 25 % ٽ ̰ ִ.  ݵ ʿ뿡 ư Ȱ ϴ οԴ ٽ . ٽô ȯ ´ٰ ϴµ, 츮 ߤ  ٽ л 20 % Ѵ. 츮 ߤ ߿ 100 ǥ Ͽ ÷ ˻Ͽ. ߿ ٽ л 15 18 ̷ Ÿ Ȯ Ͽ .
ٽ ƴ Ÿ ̱ ٽ л  Ѵ. Ƿ κ Ȯ ִ. N = 100, = 0.20 ̹Ƿ X 15 18 ̿ Ȯ ϸ Ʒ .

Ŀ ֵ Ƚ n Ŭ 쿡 Ȯ X  Ȯ Կ ſ ŷӰ ƴ. Ƿ  Ժ ٽѼ ذϵ .
ü ߤ ߿ 100 ǥ . 100 ǥ ߴٰ .  ǥ ٽ л Ѵ. ٽ л 20 % ؼ ǥ ٽ л 20 Ÿ ʴ´. ǥ 18 , Ǵ 16 , Ǵ 22 ε Ÿ ִ.
ٽ л Ȯ X ̴. Ƿ 100 ǥ ̴´ٸ, Ȯ X  8 Ȯ ̴.

 8 n = 100, = 0.20 
 8 Ÿ ٿ ǥ ݺؼ Ѵٸ Ȯ X Ժ ִ.  Ժ ڼϰ DZ X 15 18 Ÿ Ȯ ȮϿ   9 .

 9 15 X 18  Ժ
 Ժ ٽ мԿ ־ Ȯ ߱ ʿ䰡 ִ. ֳϸ  Ȯ ϴ ݸ, Ժ ̴. Ƿ  Ȯ X 15 18 ̿ Ȯ Ժ 14.5 18.5 ̿ Ե Ȯ ؾ Ѵ. Ѽ Ȯ ؾ߸ Ѱ踦 ֱ ̴. ̷ Ȯ Ȯ ٽų Ǵ ݿø ؾ Ѵ. ̰ Ӽ (continuity correction) ̶ Ѵ.
̷ Ӽ ̻Ȯ Ȯ ٽŰ Ǵ ̱ ؼ ʿϴ. Ȯ Ȯ Ӽ ϱ ؼ Ϲ 0.5 ְų Ǵ ش. Ȯ a b ̿ Ȯ ϱ ؼ Ȯ Ѿ ϴ a - 0.5 b + 0.5 ̴. ϰ ִ Ȯ X 15 18 ̿ Ȯ ϴ ̴. Ƿ Ժ ٽų Ӽ Ȯ Ǵ 14.5 18.5 ̿ Ȯ ؾ Ѵ.
4 忡 ٿ Ȯ X ġ n ̰ л n(1 – ) ̴. κ n = 100 ̰ = 0.20 ̹Ƿ Ȯ X ġ 20 ̰ л 16 ִ.  ǥ ũⰡ ũ Ժ ٽ Ȯ Ѵ. ǥ ̴´ٸ ٽ л Ȯ X μ 20 ̰ л 16 Ժ Ѵ. P(15 X 18) Ӽ Ͽ P(14.5 X 18.5) Ѵ.
P(14.5 X 18.5) ; ǥȭ Ų.

= P(-1.38 Z -0.38) ; ¿Ī̹Ƿ
= P(0.0 Z 1.38) – P(0.0 Z 0.38) ; ǥԺκ ϸ
= 0.4162 – 0.1480
= 0.2682

ߤ  100 ̾ ٽ л 15 18 ̷ Ÿ Ȯ 26.82 % ̴.
|  5 | 츮 ó 32 (1896 ) ̴. 츮 ܷ ϴ '' '¾' ٲ ̴.  ս̳ ΰ Ϥ ϿԴ. ٰ Ǿµ ٷ ô뿴. 츮 dz ȭ ĸϱ å ϳ.  ô ϴ Ϳ Ͽ źΰ Ͽ. ó 츮 ûҳ κ ڱ ¥θ ˰ ִ. ûҳ  ڱ ¥ε ˰ ִ 10 % Ѵ. ٸ ûҳ 100 ǥ ڱ ¥ε ˰ ִ ûҳ 12 ̻ Ÿ Ȯ ΰ? | 
| Ǯ 5 | ڱ ¥ ˰ ִ  Ÿ ̴. ¥ ˰ ִ ûҳ Ȯ X .  X Ȯ̴. κ n = 100, = 0.10 ̹Ƿ X հ л Ѵ.  = E(X) = n = 100(0.10) = 10  Ȯ X 12 ̻ Ȯ ִ. ǥ ũ  Ժ ٽ Ȯ ִ. P(X 12) ; Ӽ Ѵ. P(X  11.5) ; ǥȭ Ų. 
 л 9 ̹Ƿ ǥ 3 ̴. = P (Z  0.5) = 0.5 – P(0  Z  0.5) =0.5 – 0.1915 = 0.3085 
 ¥ε ˰ ִ ûҳ 12 ̻ Ÿ Ȯ 30.85 % ̴. |