Probability
Pattern Recognition and Image Analysis : Earl Gose. Richard Johnsonbaugh. Steve Jost Àú¼, Prentice Hall, 1996, Page 38~73
2.1 Introduction
2.2 Probabilities of Events
Conditional Probabilities
The Multiplication Rule
2.3 Random Variables
The Binomial Distribution
The Poisson Distribution
Continuous Random Variables
The Uniform Density
The Exponential Density
2.4 Joint Distributions and Densities
2.5 Moments of Random Variables
2.6 Estimation of Parameters from Samples
P38
The Normal Density
(2.17)
P39
Figure 2.10 : (a) A normal density
with mean and standard deviation
. (b) The standard normal density function
(solid curve), and its cumulative distribution function (dashed curve).
Section 2.5.
,
(2.18)
P42
(2.19)
Example 2.8
P43
(2.20)
P44
Figure 2.13
3, 1, 2, 9, and 5, 1,
2, 3, 5, and 9 -0.967,
-0.430, 0.000, 0.430, and 0.967 5+1 1/6
1/6
, 2/6
, 3/6
, 4/6
, and 5/6
2.15a 2.15b 2.15c 2.15a 2.15b 2.15c
P45
Figure 2.14
2.14b
,
P46
Figure 2.15
P47
Example 2.9
|
|
|
|
|
is in |
|
Example 2.10
P48
Figure 2.16
,
¾Æ¸¶ °¡Àå ¸¹ÀÌ »ç¿ëµÇ´Â 2 Â÷¿ø density ´Â bivariate
normal density ÀÌ¸ç ´ÙÀ½ ½ÄÀ¸·Î Ç¥ÇöµÈ´Ù. ±× Ưº°ÇÑ ¿¹·Î¼ÀÇ 3 Â÷¿ø ±×·¡ÇÁ°¡
¾Æ·¡ ±×¸²°ú °°´Ù. È®·üºÐÇ¥ ÀÎ °æ¿ì°¡
¿¡¼´Â Ÿ¿øÇüÀ¸·Î Ç¥ÇöµÈ´Ù.
(2.21)
P49
Figure 2.16
th moment
P50
th central moment
th
Example 2.11
P51
|
|
0 |
1/4 |
Example 2.12
Example 2.13
(2.22)
P52
(2.23)
P53
(2.24)
Example 2.14
Example 2.15
P54
Example 2.17
(2.25)
P55
Example 2.18
P56
(2.26)
¥ì
P57
(2.27)
(2.28)
(2.29)
P58
P59
Example 2.19
2, 3, 5, 6, 8, 9, 11, and 12
and
and
and
P60
Example 2.20
(2.30)
Example 2.21
P61
Example 2.22
(2.31)
Example 2.23
(2.32)
P62
Example 2.24
1, 2, ...,
,
,
,
P63
|
|
1 |
0 |
P64
Example 2.25
1, ...,
P65
where
(2.33)
P66
(2.34)
(2.35)
P67
S |
P68
(2.36)
(
(
(
(2.37)
P69
,
,
1/3 + 1/2 = 5/6 1/2 + 1/6
= 2/3
,
$10,000 $50,000
Example 2.26
|
|
0 |
1/4 |
,
,
,
P70
Figure 2.18
P71
Example 2.27
1, 1, 2, 5, 6
(0.75)(1) + (0.25)(4) = 1.75 1.834
P72
Figure 2.19
(a)
(b)
1.2 1.39 1.73
Example 2.28
Event |
|
|
0.1 |
P73
$1,000 $20
520 0.3 520 550 0.3 520 550 540 0.1 + 0.2 + (2/3)(0.3) = 0.5 540